Course Structure for Degree Program M. Tech. in Civil Engineering with Specialization in

Computer Aided Structural Engineering

In line with National Education Policy 2020 (Effective from AY 2024-25)

Dr. BabasahebAmbedkar Technological University Lonere 402 103, Dist- Raigad, Maharashtra, INDIA

Established vide Maharashtra Act No. XXII of 1989 and Act. No. XXIX of 2014 "Vidyavihar", P.O. Lonere, Dist. Raigad, Pin 402 103, Maharashtra, India Telephone and Fax.: 02140 - 275142 www.dbatu.ac.in

Course Structure, Guidelines, Rules and Regulations

Preamble

Economic advancement of a country is closely tied to the quality of technical education it offers. Engineering education is reaching new heights and plays a significant role in the overall education system. The preparation of engineering graduates should focus on enhancing their employability and sustainability in response to evolving industry and societal needs. As technology advances and expectations change rapidly, updating the curriculum to be contemporary and relevant is imperative.

In order to align our technical education system with global standards and practices based on performance and assessment system was implemented earlier for all Undergraduate Programs (UG). Now as per National

Education Policy-2020 framework we are incorporating project-based learning. The realm of engineering and technology, characterized by its interdisciplinary nature, demands the synthesis of knowledge from a wide array of domains including humanities, arts, and advanced technologies. However, what distinguishes technologists is their proficiency in design and their ability to adeptly apply this knowledge across diverse disciplines to achieve effective problem solving.

In response to these needs, aspiring engineers need thorough preparation and a deep understanding of the latest technological trends and industrial requirements. This calls for studying under a modern and adaptable curriculum that mirrors the global environment. As part of this initiative, there is a push to integrate recent advancements and enrich course content with pertinent and up-to-date subjects. Consequently, a revised structure and curriculum will debut from the academic year 2023-24 for First Year Civil Engineering, with intentions to progressively implement these updates across second, third- and fourth-year engineering programs.

Project-based learning has been introduced alongside traditional classroom teaching and laboratory-based learning to enhance the overall learning experience. The objective is to encourage students to learn collaboratively in groups of 3 to 4, focusing on solving meaningful problems. These problems can be theoretical, practical, social, and technical, symbolic, cultural, or scientific, arising from students' curiosity across various disciplines and professional contexts. The selected problems should be exemplary and may require an interdisciplinary approach for both analysis and resolution. This approach aims to develop students' capacity for learning through shared cognition.

• Laboratory Course:

This is focused on completing experiments and assignments related to the courses of the Semester.

• Seminar: This aspect will revolve around state-of-the-art topics selected by students and approved by the authority. Students are required to submit a certified seminar report in a standard format, evaluated

Department of Civil Engineering, DBATU, Lonere.2 | P a g e

by their assigned guide and the department/institute head for satisfactory completion of the work.

- Project Work in Final Year: Project work in the seventh Semester is integral to the curriculum. It involves applying knowledge gained throughout the graduation program, ideally addressing societal needs. The project provides an opportunity for students to design and construct complete systems or subsystems, specializing in areas of their interest. Students must prepare a certified final project report in standard format, evaluated by their guide and the department/institute head for satisfactory completion of the work.
- Internship: Internships are crucial for educational and career development, offering practical experience in field of discipline. It plays a significant role as employers seek well-trained employees. The primary objective is to expose technical students to real-world industrial environments, providing insights into the social, economic, and administrative factors influencing organizational operations. Students may choose internships in industries, government agencies, NGOs, MSMEs, rural settings, innovation hubs, intellectual property rights (IPR), or entrepreneurship initiatives. They can opt to focus on innovation, leading to start-up's, or gain experience in industry/NGO/government/MSME settings to prepare for professional roles. The conduction, monitoring, assessment, and evaluation of internships follow guidelines provided by AICTE.

Definition of Credit **

1 Hour Lecture (L) per week	1 credit for 1 Hour
Tutorial (T) per week	1 credit for 1 Hour
Practical(P) per week 2 Hours Practical (Lab)/week	1 credit for 2 Hours

** The head of Tutorial and Practical (as a special case) may be merged for common credit with the permission of authority.

Rule No. 1: Eligibility for Admission

Eligibility Criteria

Students seeking admission to the first year of the Bachelor's degree course in Engineering and Technology must fulfil the eligibility criteria as laid down from time to time by the following authorities:

- Dr.BabasahebAmbedkar Technological University (DBATU)
- Government of Maharashtra
- All India Council for Technical Education (AICTE)

Rule No. 2: Scheme of Assessment

Eligibility for the Degree of Bachelor of Engineering and Technology

To be eligible for the degree of Bachelor of Engineering and Technology, a candidate must:

1. Appearing for Examinations:

 A candidate is required to appear for all prescribed examinations during the course of study. This includes theory exams, practical exams, term-work assessments, project evaluations, and any other form of examination as specified in the syllabus.

2. Passing of Examinations:

 A candidate must pass all the prescribed examinations. The passing criteria, including minimum marks required in theory, practical, term-work, and other components, will be as per the rules laid down by the university.

Components of Assessment

The scheme of assessment typically includes the following components:

- 1. Theory Examinations:
 - Conducted at the end of each Semester.
 - Assess the theoretical understanding of the subjects.

2. Practical Examinations:

- Conducted to assess the practical skills and application of knowledge.
- Includes laboratory work, experiments, and practical assignments.

3. Term-Work Assessments:

- Continuous assessment of assignments, tutorials, and project work throughout the Semester.
- Includes the evaluation of written assignments, presentations, and project reports.

4. Project Work:

- Assessment of project-based learning and final year projects.
- Includes continuous assessment by the faculty and final evaluation through project reports, presentations, and viva-voce.

5. Internal Continuous Assessment:

- Regular assessments conducted throughout the Semester.
- Includes quizzes, class tests, mid-term exams, and participation in class activities.

Program Objectives

Goal of the Civil engineering with a specialization in Computer Aided Structural Engineering (CASE) at Dr. BabasahebAmbedkar technological University, Lonere (BATU) is to provide students with preparation to become worthy of professional careers in the field and to be motivated for lifelong learning. All prescribed courses have definite objectives and outcomes. Program objectives are expected qualities of engineers as under:

- a) **Preparation:** To prepare students to excel in various educational program to succeed in industry / technical profession through further education/training;
- **b) Core Competence:** To provide students with a solid foundation in mathematical, scientific fundamentals required to solve E&T related problems;
- c) Breadth: To train students with a breadth of scientific knowledge to comprehend, analyze, design & create novel products and solutions for real life problems;
- d) Professionalism: To inculcate in students professional/ethical attitude, effective teamwork skills, multidisciplinary approach and to relate engineering issues to a broader context;
- e) Learning Environment: To provide students with academic environment of excellence, leadership, ethical guidelines and life-long learning needed for along/productive career.

In addition to above, DBATU graduate is expected to be

- 1. Taking pride in their profession and have commitment to highest standards of ethical practices,
- 2. Able to design structural system that is safe, economical and efficient.
- 3. Capable of using modern tools efficiently in all aspects of professional practices.
- 4. Dealing successfully with real life civil engineering problems and achieve practical solutions based on a sound science and engineering knowledge.
- 5. Shall represent the highest standards of Structural engineering and related technical disciplines.
- 6. Shall be engage in continuous research, development and exchange of knowledge for professional development.
- 7. Be honest in their control and performing their duties and promote effective use of resources through open, honest and impartial services to the public.
- 8. Act in such a manner, which will uphold the honor, integrity, or dignity of the engineering profession, and avoid knowingly engaging in business or professional practices of a fraudulent, dishonest or unethical nature.
- 9. Recognize that the lives, safety, health and welfare of the public are dependent upon engineering, decision and practices.
- 10. Continue their professional development throughout their careers and provide opportunities for the professional development.

Course Category	Provided	
Program Core Course (PCC)		15
Program Elective Course (PEC)		12
Experiential Learning Courses (ELC)		42
Humanities Social Science and Management (HSSM-IKS/VEC/AEC)		7
Open Elective (OE) Other than a particular program		3
Multidisciplinary Minor (MDM)		3
	OTAL	82

Table A: Credit Structure for PG program in Engineering

Dr. Babasaheb Ambedkar Technological University, Lonere Teaching & Evaluation Scheme for M. Tech. in Civil Engineering with Specialization in Computer Aided Structural Engineering

Sr. No.	Course Code	Course Title		each cher	<u> </u>	E	valuatio	on Scho	eme	Credit
			L	Τ	P	ISE	MSE	ESE	Total	
		Semester- I					1			
1	MCVCASEPCT 101	Theory of Elasticity and Plasticity	3			20	20	60	100	3
2	MCVCASEPCT 102	Matrix Methods of Structural Analysis	3			20	20	60	100	3
3	MCVCASEPCT 103	Structural Dynamics	3			20	20	60	100	3
4	MCVCASEPET 104	Program Elective-I	3			20	20	60	100	3
5	MCVCASEPET 105	Program Elective-II	3			20	20	60	100	3
6	MCVCASEELL 106	CASE-I Laboratory			4	25		25	50	2
7	MCVCASEELL 107	CASE-II Laboratory			4	25		25	50	2
8	MCVCASEHMT 108	Communication Skills	2			25		25	50	2
9	MCVCASEAUP 109	YOGA for Stress Management			2		AU	AU	AU	AU
		Total	17	0	10	175	100	375	650	21
		Semester- II	_				1			
1	MCVCASEPCT 201	Theory of Plates and Shells	3			20	20	60	100	3
2	MCVCASEPCT 202	Finite Element Analysis	3			20	20	60	100	3
3	MCVCASEPET 203	Program Elective- III	3			20	20	60	100	3
4	MCVCASEPET 204	Program Elective- IV	3			20	20	60	100	3
5	MCVCASEOET 205	Open Elective-V	3			20	20	60	100	3
6	MCVCASEELL 206	CASE-III Laboratory			4	25	-	25	50	2
7	MCVCASEELL 207	Mini Project			4	25	-	25	50	2
8	MCVCASEHMT 208	Indian Knowledge System	2			20	20	60	100	2
		Total	17	0	12	170	120	410	700	23

Type of course:

Program Core: PC	Program Elective: PE				
Open Elective: OE (Other than particular program)	Ability Enhancement Course: AE				
Modern Indian Language: MIL	Humanities, Management, language and Commerce: HM				
Experiential Learning Courses: EL	Multidisciplinary Minor Courses: MD				
ABBRIVATIONS: ISE-INSEMESTER EVALUATION, MSE-MID SEMESTER EVLUATION, ESE -END SEMESTER EVALUATION					

Dr. Babasaheb Ambedkar Technological University, Lonere Teaching & Evaluation Scheme for M. Tech. in Civil Engineering with Specialization in Computer Aided Structural Engineering

Sr.	Course Code	Course Code Course Title		Course Code Course Title Teaching Scheme		Evaluation Scheme				
No.	course coue			Т	Р	ISE	MSE	ESE	Total	Credit
	Semester-III									
1	MCVCASEMDT 301	MOOC/SWAYAM/ NPTEL	3			20	20	60	100	3
2	MCVCASEMDT 302	PLATFORM COURSES/Self Study. (It is	3			20	20	60	100	3
3	MCVCASEHMT 303	desirable to choose one course from each of PE,OE &AE)	3			20	20	60	100	3
4	MCVCASEELP 304	Seminar-I			4	25		25	50	2
5	MCVCASEELP 305	Dissertation Stage -I			20	50		50	100	10
		TOTAL	09		24	135	60	255	450	21
	Semester-IV									
1	MCVCASEELP 401	Dissertation Stage-II			40	100		100	200	20
	TOTAL 20 100 100 200 20					20				

Dissertation Stage –I /Internship

Students can take Industry Internship along with Dissertation Stage –I. Students must maintain regular reporting with Dissertation supervisor regarding status of Dissertation

Dissertation Stage I and Synopsis Approval :

It is a course requirement under the guidance of faculty Supervisor. PG student from second year is required to do innovative and research oriented applied work related to various theory and laboratory courses. Dissertation work may cover analytical formulation, experimentation or survey based project or combination of these. Student are encouraged to undertake an interdisciplinary type project.

Students should be encouraged to publish a paper on Stage -I work in Journals/conferences.

Sr.No.	. Multidisciplinary Minor Courses						
A	 MOOC/SWAYAM/ NPTEL -Project Management and Intellectual Property Rights (Self Study) Student may select this course either from MOOC/SWAYAM/ NPTEL pool or any other approved reputed source. The submission of course completion certificate is mandatory. MCVCASEMDT301/302, MCVCASEHMT 303 - Institute has to take care of registration of subjects with detailed syllabus in first two weeks of beginning of the semester with example department of DABATU. 						

Dr. BabasahebAmbedkar Technological University, Lonere Teaching & Evaluation Scheme for M. Tech. in Civil Engineering with Specialization in Computer Aided Structural Engineering

Sr.No.	Program Elective-I	Program Elective-II
A	Advance Structural Analysis	Advanced Pre-stressed Concrete
В	Numerical Methods	Design of Masonry Structures
C	Design of Steel Concrete Composite Structures	Offshore Structures
D	Design of Bridges	Structural Stability

Sr. No.	Program Elective-III	Program Elective-IV	Open Elective
A	Design of Cold Formed Steel Structures	Design of Tall Structures	Research Methodology
В	Retrofitting of Structures	Design of Foundation	Soil Dynamics & Machine Foundations
C	Design of Shells & Folded Plates	Structural Audits	Advance Concrete Technology
D	Earthquake Engineering & Design of Earthquake Resistant Structures	Optimization in Structural Design	Glass in Buildings: Design and Applications
Е	Design of advanced steel structure	Structural Health Monitoring	Solution Procedures in Civil Engineering

Sr.No.	Multidisciplinary Minor	Indian Knowledge System
А	MOOC/SWAYAM/ NPTEL	Concepts and Applications in Engineering
В	Project Management and Intellectual Property	Humanities and Social Sciences

Dr. Babasaheb Ambedkar Technological University, Lonere Teaching & Evaluation Scheme for M. Tech. in Civil Engineering with Specialization in Computer Aided Structural Engineering

Sr. No.	Course Code	Course Title		achi chen T		E ISE	valuatio MSE	on Scho ESE	eme Total	Credit
	I	Semester- I	1	1			1	I	1	I
1	MCVCASEPCT 101	Theory of Elasticity and Plasticity	3			20	20	60	100	3
2	MCVCASEPCT 102	Matrix Methods of Structural Analysis	3			20	20	60	100	3
3	MCVCASEPCT 103	Structural Dynamics	3			20	20	60	100	3
4	MCVCASEPET 104	Program Elective-I	3			20	20	60	100	3
5	MCVCASEPET 105	Program Elective-II	3			20	20	60	100	3
6	MCVCASEELL 106	CASE-I Laboratory			4	25		25	50	2
7	MCVCASEELL 107	CASE-II Laboratory			4	25		25	50	2
8	MCVCASEHMT 108	Communication Skills	2			25		25	50	2
9	MCVCASEAUP 109	YOGA for Stress Management			2		AU	AU	AU	AU
		Total	17	0	10	175	100	375	650	21

Type of course:

Program Core: PC	Program Elective: PE				
Open Elective: OE (Other than particular program)	Ability Enhancement Course: AE				
Modern Indian Language: MIL	Humanities, Management, language and Commerce: HM				
Experiential Learning Courses: EL	Multidisciplinary Minor Courses: MD				
ABBRIVATIONS: ISE-INSEMESTER EVALUATION, MSE-MID SEMESTER EVLUATION, ESE -END SEMESTER EVALUATION					

SUBJECT CODE CREDITS Theory of Elasticity and Plasticity **MCVCASEPCT 101** 3 Teaching Work Load/week(Hrs.) Examination Scheme(Marks) Theory Tutorial Laboratory Total ISE MSE ESE Total 3 0 0 3 20 20 60 100

Cours	e Outcomes: Students will be able to
CO1	Understand concept of stress and strain at a point, Stress equilibrium, Strain compatibility, and analyse. Stress and Strain at a point with various perspectives, etc. under in three-dimensional state of stress.
CO2	Establish relation between stress and strain for various materials, Elastic constants, and reduce 3D
CO3	Formulate and analyse stress concentration problems due to various complex situations.
CO4	Formulate and analyse members subjected to Torsion using various classical approaches.
CO5	Able to understand different post yielding behaviour of materials and Plasticity theories.

Course Contents

Module 1	Analysis of Stresses and Strains	Hrs. 8			
Concept of Stress at a Point, Stress Tensor, State of Stress at a Point in Cartesian Coordinate System, Derivation of					
Stress Equilibrium Equations in Cartesian and Polar Coordinate System, Cauchy's Formula, Normal Stress, Shear					
Stress and Resultant Stress on any Inclined Plane, Transformation of Stresses, Stress Invariants, State of Pure Shear,					
Principal Stresses,	Maximum Shear Stresses, Octahedral Stresses, Decomposition of State of Stress into	Pure Shear			
and Hydrostatic Sta	ress, Mohr's Circles/ Spheres for Various States of Stress, The State of Strain at a P	oint, Strain			
Displacement Relat	ions, Strain Compatibility Condition, Volumetric Strain, Problems on Navier Lame's I	Equilibrium			
Equations, Problem	s on Beltrami - Michell Compatibility Equations, Boundary Value Problems in Elastic	city.			
Module 2	Stress-Strain Relationship	Hrs. 8			
Generalized Hook	e's Law, Hooke's Law for Isotropic, Orthotropic, Plane Stress, Plane Strain	and Axi-			
Symmetric Proble	ems, Relations between Elastic Constants, Problems in 2D and 3D Cartesian	Coordinate			
System, Airy's S	stress Function, Bending of Beams, Straight Beams & Asymmetrical Bend	ling, Euler			
Bernoulli Hypothe	esis, Shear Center or Center of Flexure, Shear Center in Thin Walled Open Se	ections and			
Other Sections					
Module 3	Stress Concentration Problems	Hrs. 6			
Stress Concentratio	Stress Concentration Problems such as Stress Concentration due to Circular Hole in Stressed Plate (Kirsch's Problem),				
Stresses under Concentrated Load such as Concentrated Load acting on the Vertex of a Wedge (Michell's Problem)					
and Concentrated Load Acting on the Free Surface of a Plate (Flamant's Problem), Axi-symmetric Problems such as					
Stresses in Thick Cylinders Subjected to Internal and External Uniformly Distributed Pressures (Lame's Problem).					
Module 4	Torsion	Hrs. 6			

Department of Civil Engineering, DBATU, Lonere.11 | P a g e

Assumptions and Torsion Equation for General Prismatic Solid Bars, Warping of Non-Circular Sections and St. Venant's Theory, Prandtle's Stress Function Approach, Torsion of Circular, Elliptical and Triangular Cross-Section, Torsion of Thin-Walled Structures by Membrane Analogy, Torsion of Rolled Sections and Shear Flow.

Module 5PlasticityHrs.7Basic Equations, Similarities and Differences when Compared with Elasticity, Idealized Material Behaviour,
Mechanical Models, Neck Formation, Failure Theories, Modes of Failure, Failure under Static Equilibrium,
Buckling, Vibrations, Yielding, Fracture, Ductile and Brittle Failure, Yield Criteria, Rankine's Theory, Saint
Venant's Theory, Tresca Criteria, Beltrami's Energy Criteria, Von Mises and Hencky & Huber's Theory,
Comparison of Different Theories under Axial Tension and Torsion, Various Empirical Stress-Strain
Relationships

Text F	Text Books:		
1	L. S. Shrinath, Advanced Solid Mechanics, Tata-McGraw Hill Publications.		
2	Timoshenko & Goddier, Theory of Elasticity & Plasticity, Mc-Graw Hill Publications.		
3	Martin Sadd, Elasticity Theory, Applications & Numerics, Academic Press.		
4	M A Kazami, Solid Mechanics, Tata -McGraw Hill Publications.		
5	Sadhu Singh, Theory of Elasticity, Khanna Publishers, New Delhi		

Refer	Reference Books:		
1	Irving Shames, Mechanics of Deformable Solids, Prantice Hall.		
2	N K Bairagi, Advanced Solid Mechanics, Khanna Publishers, New Delhi.		
3	Wang, Applied Elasticity, Dover Publications.		
4	N Dahl and T Lardner, S Crandall, Mechanics of Solids, McGraw Hill Publications.		
5	Scholer, Elasticity in Engineering, McGraw Hill Publications.		

SUBJECT CODE					CREDITS			
MCVCASEPCT 102		Matrix M	lethods o	f Structur	ral Analy	S1S	-	3
Teaching Work Load/wee			s.)		Examination Sc	heme(Marl	cs)	
Theory	Theory Tutorial Laboratory Total ISE MSE		ESE		Total			
3	0	0	3	20	20	60		100

Cours	Course Outcomes: Students will be able to		
CO1	Draw deflected shapes of various structures for different loading and boundary conditions.		
CO2	Understand difference in force approach and displacement approach in structural analysis.		
CO3	Analyze various plane structural systems using direct and generalized flexibility approach.		
CO4	Analyze various plane structural systems using direct and generalized stiffness approach.		
CO5	Develop codes for computer based analysis of plane structures		

Department of Civil Engineering, DBATU, Lonere.12 | P a g e

Module 1	Introduction & Direct Flexibility Matrix Method	Hrs. 8				
Introduction and Review of Various Methods for Finding Slopes and Deflections at a Point in Statically						
Determinate and	Determinate and Indeterminate Structures, Assessment of Deflected Shape of Structures for Different					
Loading & Suppo	rt Conditions. Direct Flexibility Matrix Method, Applications to Continuous Beams,	Pin Jointed				
Frames, Rigid Joint	ted Frames					
Module 2	Generalised Flexibility Matrix Method	Hrs. 8				
Generalised Flexi	bility Matrix Method, Applications to Continuous Beams, Pin Jointed Frames, Ri	gid Jointed				
Frames.						
Module 3	Direct Stiffness Matrix Method	Hrs. 6				
Direct Stiffness Ma	Direct Stiffness Matrix Method, Applications to Continuous Beams, Pin Jointed Frames, Rigid Jointed Frames.					
Module 4	Generalised Stiffness Matrix Method	Hrs.10				
Generalised Stiffn	Generalised Stiffness Matrix Method, Applications to Continuous Beams, Pin Jointed Frames, Rigid Jointed					
Frames.						
Module 5	Nonlinear Analysis	Hrs.6				
Material and Geometric Non-Linearity, Stiffness Method with Material Non-Linearity and Geometric Non-						
Linearity.	Linearity.					
1						

Text I	Text Books:		
1	Weaver W, Gere G. M., Matrix Analysis of Framed Structures, Van Nostrand Reinhold, New York.		
2	Hibbler R. C., Structural Analysis,		
3	Reddy C. S., Basic Structural Analysis, Tata Mc Graw Hill Publications.		
4	G. S. Pandit, S. P. Gupta, Structural Analysis – A Matrix Approach, Tata Mc Graw Hill Publications.		
5	Devdas Menon, Structural Analysis, Alpha Science.		

Reference Books:		
1	A. S. Meghare, S. K. Deshmukh, Matrix Methods of Structural Analysis, Charotor Publishing House.	
2	B. N. Thadani, J. P. Desai, Structural Analysis – A Matrix Approach, Ueinall Publications, Mumbai	

SUBJE	CT CODE		a	1 D	•		C	REDITS
MCVCASEPCT 103			Structura	I Dynam	1CS			3
Teaching Work Load/week(Hrs.)			s.)		Examination Sc	heme(Mai	rks)	
Theory	Theory Tutorial Laboratory Total ISE MSE ESE		Ξ	Total				
3	0	0	3	20	20	60		100

Department of Civil Engineering, DBATU, Lonere.13 | P a g e

Cours	Course Outcomes: Students will be able to		
CO1	Understand basics of response of structures to forced vibrations and free vibrations.		
CO2	Analyse response of SDoF systems to general loading and understand various methods of evaluation		
CO3	Analyse response of structures to ground excitations, support excitations and torsional excitations.		
CO4	Understand and Analyse structures for natural frequency and modal analysis.		
CO5	Analyse response of structural system by numerical evaluation using various classical approaches.		

Module 1	SDoF Systems	Hrs. 6			
Simple Structures	s, SDoF System, Force -Displacement Relation, Damping Force, Equation of	of Motion,			
External Force, M	External Force, Mass Spring Damper System, Equation of Motion: Earthquake Excitation, Combining Static				
& Dynamic Resp	onses, Methods of Solution of the Differential Equation, Free Vibration: Un-	damped &			
Viscously Dampe	d Free Vibration, Energy in Free Vibration, Coulomb Damped Free Vibration, R	esponse to			
Harmonic & Perio	odic Excitations, Viscously Damped Systems, Systems with Non Viscous Damp	ing.			
Module 2	SDoF System under General Loading	Hrs. 8			
Response to Unit	Impulse, Arbitrary Time Varying Force, Response to Step and Ramp Forces, R	esponse to			
Pulse Excitations,	Rectangular Pulse, Half Sine Wave Pulse, Triangular Pulse, Response to Groun	nd Motion,			
Numerical Evalua	tion of Dynamic Responses, Time Stepping Methods, Interpolation Methods, N	Jewmark's			
Beta Method.					
Module 3	Generalized SDoF System	Hrs. 6			
Generalized SDF S	Systems, Rigid Body Assemblages, Systems with Distributed Mass & Elasticity, Lu	nped Mass			
System, Natural Vi	bration Frequency by Rayleigh's method, Shape Functions				
Module 4	MDoF Systems	Hrs.10			
Simple Systems, 7	Two Storey Shear Buildings, General Approach for Linear Systems, Static Con	densation,			
Symmetric and As	symmetric systems subjected to Ground Motion, Symmetric Systems subjected to) Torsional			
Excitations, Multip	ble Support Excitations, Methods for Solving Equations of Motion.				
Module 5	Dynamic Analysis and Response of Linear Systems	Hrs.6			
Systems without	Damping, Natural Vibration Frequencies and Modes, Modal & Spectral	Matrices,			
Orthogonality of Modes, Normalization of Modes, Modal Expansion of Displacements, Free Vibration					
Response of Damped and Undamped and Classically Damped Systems, Damping in Structures, Classical					
Damping Matrix, Non Classical Damping Matrix, Two DoF Systems, Modal Analysis, Modal Response					
Contributions.					

Text B	Text Books:			
1	R. W. Clough & Joseph Penziene, Dynamics of Structures, Mc-Grew Hill Publications.			
2	A. K. Chopra, Dynamics of Structures: Theory & Application to Earthquake Engineering, Prentice Hall Publications.			
3	Mario Paz, Structural Dynamics, CBS Publication.			
4	Roy Craig, Structural Dynamics, John-Wiley & Sons.			
5	Jagmohan L. Humar, Dynamics of Structures, Swets and Zeitlinger, Netharlands.			

Refere	Reference Books:				
1	1 Jaikrisna, A. R. Chandrashekharan, Elements of earthquake Engineering, South Asian Publishers.				
2	Mukhopadhayay Madhujit, Structural Dynamics: Vibration and systems, Ane Books India Publisher.				
3	Patrick Paultre, Dynamics of Structures, Wiley India				

SUBJE	SUBJECT CODE (Program Elective-I)			CREDITS			
MCVCASEPET 104A Advanced Structural Analysis				3			
Teaching Work Load/week(Hrs.) Exar				Examination Sc	heme(Mar	rks)	
Theory	Theory Tutorial Laboratory Total ISE MSE I				ESE	Ξ	Total
3	3 0 0 3 20 20 60			100			

Cours	Course Outcomes: Students will be able to	
CO1	CO1 Draw ILD for indeterminate structures.	
CO2	Analyze the beams curved in plan.	
CO3	3 Analyze the structure resting on elastic foundation.	
CO4	Analyze the skeleton structures using stiffness method.	
CO5	Analyze the suspension bridges.	

Module 1	Influence Line Diagrams for Indeterminate Structures	Hrs. 6					
Continuous beam	Continuous beams, portal frames and two hinged arches. Muller- Breslau's Principle and Moment						
Distribution Meth	od.						
Module 2	Beams	Hrs. 8					
Beams curved in p	plan: Determinate and indeterminate beams curved in plan. Beams on elastic fo	undations:					
Analysis of infinit	e, Semi- infinite and finite beams.						
Module 3	Beam columns	Hrs. 6					
Concept of geometric and material non linearity, Governing differential equation, Analysis of beam columns							
subjected to different loadings and support conditions, Stiffness and carry-over factors for beam-columns, fixed end							
actions due to vario	us loads.						

Module 4	Shear center and Unsymmetrical bending.	Hrs.10
Position of shear co	enter, shear flow, shear center of various sections, unsymmetrical bending, Z polygor	n, combined

Position of shear center, shear flow, shear center of various sections, unsymmetrical bending, Z polygon, combined stresses.

Module 5	Cables and suppression bridges	Hrs.10
Shape of cable, a	nchor cable, temperature stresses, moving loads, two hinged and three hinged	d stiffened
bridges.		

Text	Text Books:	
1	Structural Analysis by Negi and Jangid.	
2	Analysis of structure by Vazirani and Ratwani, Vol. II	
3	Advanced Theory of Structures by Vazirani and Ratwani.	
4	4 Theory of Elastic Stability by Timoshenko and Gere.	
5	Matrix Analysis of Framed structures by Gere and Weaver.	

Refere	Reference Books:	
1	1Structural Analysis – A Matrix approach by Pandit and Gupta.	
2	2 Mechanics of Structures Vol. I, II and III by Junnarkar and Shah.	
3	Basic structural Analysis by C. S. Reddy.	

SUBJE	SUBJECT CODE (Program Elective-I)					C	CREDITS
MCVCA	MCVCASEPET 104B Numerical Methods				3		
Teaching Work Load/week(Hrs.) Examination Schem				heme(Mar	rks)		
Theory	Theory Tutorial Laboratory Total ISE MSE ES				ESE	Ξ	Total
3	0 0 3 20 20 60					100	

Cours	Course Outcomes: Students will be able to		
CO1	Formulate mathematical models of various engineering problems.		
CO2	Demonstrate understanding of common numerical methods and how they are used to obtain		
CO3	Solve non-linear equations, simultaneous linear algebraic equations, Eigen value problems, using		
CO4	Perform numerical differentiation and integration and analyze the errors.		
CO5	Apply curve fitting techniques to experimental data		

Module 1	Introduction	Hrs. 6		
Introduction and	Necessity of Numerical Methods, Number representation and errors, Number i	n different		
bases, Non intege	bases, Non integer & Fraction, mantissa, exponent, normalized scientific notations, Errors in representing			
numbers, Inverse	error analysis, Loss of Significance.			

Module 2	Solution of Linear and Non-Linear Algebraic Equations	Hrs. 8
Systems of Line	ar Algebraic Equations, Introduction, ill Conditioning, Methods of Soluti	on (Gauss
Elimination Met	hod, LU Decomposition Method, Doolittle Decomposition Method, Ga	uss-Jordon
Elimination Meth	od, Gauss Seidel Method), Symmetric& Banded Coefficient Matrices, Pivoting	, Diagonal
Dominance, Gaus	s Elimination with scaled row Pivoting, Roots of Algebraic & Transcendental	Equations,
Fixed point iterati	on method, Iterative Search Method, Bisection Method, Geometrical Approac	h to Root
Finding, Converg	ence towards Roots of Equation, Secant Method, False Secant/ Regula-False	si Method,
Ridder's Method,	Newton Raphson Method, System of Non-Linear equations (Newton Raphson	Method).
Module 3	Regression Analysis	Hrs. 6
Interpolation and C	urve Fitting, Discrete Data, Lagrange's Interpolating Polynomial, Newton's Polynom	ial Method,
Limitations of Inte	rpolation with Polynomials, Spline Interpolation, Curve Fitting, Least Square Fit, I	Fitting with
straight Line, Polyr	nomial Fit, Weighted Linear Regression, Fitting Exponential Function.	
Module 4	Numerical Integration Methods	Hrs.8
Numerical Differ	entiation and Integration, Taylor's Series, Finite Difference Method, Error	in Finite
Difference Approx	ximation, Richardson Extrapolation, Derivatives by Interpolation, Cubic Spline I	nterpolant,
Numerical Integra	tion or Quadrature, Newton Cotes Formula, Trapezoidal & Composite Trapezo	oidal Rule,
Simpson Rule, H	Recursive Trapezoidal Rule, Romberg Integration, Gaussian Integration,	Orthogonal
Polynomial, Absc	issas and Weights for Gaussian Quadrature, Gauss Legendre Quadrature, Gaus	s Laguerre
& Gauss Hermite	Method, Gauss-Chebyshev Quadrature, Gauss Quadrature with Logarithmic Sin	ngularity
Module 5	Solution of Differential Equations	Hrs.8
Initial Value Prob	lem, Taylor series approach, Euler"s Method, Runge-Kutta Method, Second Or	der Runge-
Kutta Method, For	th order Runge-Kutta Method, Stability of Euler"s Method, Stiffness, Adaptive R	unge-Kutta
Method, Bulrisch	Stoer Method, Numerical Methods in Structural Dynamics, Implicit and Explicit	it Method,
Central Difference	e Method, Newmark-Beta Method, Wilson-Theta Method.Boundary Value	Problem,
Eigenvalue Proble	em in Structural Dynamics, Inverse vector iteration method.	
Guidelines for A	Assignments:	

The candidate shall perform minimum six assignments consisting theoretical as well as numerical aspects of the Course. Assignments covering programming in C or MATLAB for all methods is desirable.

Text E	Books:
1	L. Ridgway Scott., Numerical Analysis, Princeton University Press
2	S. D. Conte, Carl de Boor, Elementary Numerical Analysis: An Algorithmic Approach, Mc Graw Hill Publications
3	S. R. Otto, J. P. Deneir, An introduction to Programming and Numerical methods in MATLAB, Springer

4	Jaan Kiusalaas, Numerical Methods in Engineering with MATLAB, Cambridge University Press.
5	William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, Numerical Recipes
	in C, Cambridge University Press.

SUBJECT CODE		(Program Elective-I)					CREDITS	
MCVCASEPET 104C		Design of St	ν U	,	osite Struc	tures		3
	Teaching Work Load/week(Hrs.)				Examination Sc	heme(Mar	·ks)	
Theory	Tutorial	Laboratory	Laboratory Total ISE MSE ESE		3	Total		
3	0	0	3	20	20	60		100

Cours	Course Outcomes: Students will be able to				
CO1	Understand about steel composite structures.				
CO2	Learn to design steel composite structures.				
CO3	Learn to design connections in steel composite structures				
CO4	Understand about box girder bridges.				
CO5	Analyze seismic behavior of steel composite structures.				

Module 1	Introduction	Hrs. 6				
Introduction to steel - Concrete composite construction - Theory of composite structures - Introduction to						
steel - Concrete -	Steel sandwich construction.					
Module 2	Design of Composite Members					
Behavior of comp	osite beams - Columns - Design of composite beams - Steel – Concrete composi	te columns				
- Design of compo	osite trusses.					
Module 3	Design of Connections	Hrs. 6				
Types of connection	ns - Design of connections in the composite structures – Shear connections -Design of c	onnections				
in composite truss	es.					
Module 4	Composite Box Girder Bridges	Hrs.8				
Introduction - Behavior of box girder bridges - Design concepts.						
Module 5	General	Hrs.8				
Case studies on s	steel - Concrete composite construction in buildings - Seismic behaviour of	composite				
structures.						

Text Books:					
1	Johnson R.P., Composite structures of steel and concrete, Blackwell Scientific Publications (Second				
	Edition), UK, 1994.				
2	Owens, G.W. and Knowels. P. Steel Designers manual (Fifth edition), Steel Concrete Institute (UK),				
	Oxford Blackwell Scientific Publications, 1992.				

SUBJECT CODE (Program Electiv				m Elective-I)			C	CREDITS
MCVCA	SEPET 104D		、 U	of Bridg	ges			3
	Teaching Work Load/week(Hrs.)				Examination Sc	heme(Mar	:ks)	
Theory	Tutorial	Laboratory	Total	ISE MSE ESH		3	Total	
3	0	0	3	20	20	60		100

Cours	Course Outcomes: Students will be able to					
CO1	Understand the preliminary concepts, development, various types of bridges and it's conceptual					
CO2	Study various types of loadings coming on road and railway bridges.					
CO3	Study the behaviour of various types of bridges under different loadings.					
CO4	Design of slab decks of various types of RC and PSC bridges.					
CO5	Perform the design of substructure components like piers, abutments, wing walls and it's foundation					

Module 1	Introduction to Bridge Engineering	Hrs. 8					
Historical Perspective, Introduction, Layout and Planning, Investigations for Bridges, Classification and							
Components of Br	ridges, Choice of Type of Bridges and Choice of Materials. General Arrangement	ofVarious					
Types of Bridges	including Arch Type, Slab Type, Slab and Beam Type, Plate Girder Type,	Open Web					
Girder, Cable Sta	yed Type, etc., Conceptual Bridge Design. Modern Methods of Construction o	f Concrete,					
Steel and Compo	site Bridges, their Impact on Analysis and Design, Study of various types of J	loints to be					
provided during C	Construction.						
Module 2	Loading on Bridges	Hrs. 8					
Loading Standard	s for Roads and Railway Bridges as per IRC Standards and IRS Standards, Analy	vsis of other					
Loads Like Impa	act Factor, Centrifugal Forces, Wind Load, Earthquake Load, Hydraul	ic Forces,					
Longitudinal For	ces, Earth Pressure, Buoyancy Effects, etc. Analysis by Pieguad's and Courbon	ı's Theory.					
Module 3	Structural Behavior of Various Bridges	Hrs. 6					
Structural behavior	r of Box Girder Bridges, Arch Bridges, Suspension Bridges, Skew Bridges and C	able Stayed					
Bridges under varie	ous loads.						
Module 4	Design of Bridge Decks	Hrs.10					
Load Distribution	in Slab and Bridge, Behavior, Analysis and Design RC and Prestressed Deck Slab, I	Longitudinal					
and Cross Girders,	Design of Long Span Bridge, Slab Culvert and Box Culvert.						
Module 5	Design of Sub structure and Foundation	Hrs.10					
Design of Bearing	gs, Design of Sub Structure and Foundations, Piers and Abutments of Different	Types and					

Shapes, Shallow and Deep Foundation, Wing Walls .

Text	Books:
1	Dr.V.K.Raina, Concrete Bridge Practice: Analysis, Design and Economics, Shroff Publishers &
	Distributors Pvt Ltd.,
2	Dr. B. C. Punmia, Ashok Kumar Jain, Arun Kumar Jain, Reinforced Concrete Structures, Vol. II,
	Laxmi Publications.
3	Jagadish & Jayaram, Design of Concrete Bridges, Tata McGraw Hill.
4	Victor, Design of Concrete Bridges, Tata McGraw Hill.
5	N. Krishnaraju, Prestressed Concrete Bridges, CBS Publishers & Distributors Pvt. Ltd.

Refer	ence Books:
1	Ponnuswamy S., Bridge Engineering, Tata McGraw Hill.
2	Dr. V. K. Raina., Concrete Bridge Practice: Construction, Maintenance & Rehabilitation, Shroff Publishers & Distrib. Pvt Ltd.
3	Dr.V.K.Raina, Field Manual for Highway & Bridge Engineers, Shroff Publishers & Distributors Pvt Ltd.
4	Dr.V.K.Raina, Handbook for Concrete Bridges, Shroff Publishers & Distributors Pvt Ltd.
5	Victor D. J., Essentials of Bridge Engineering, Oxford & IDH

SUBJE	SUBJECT CODE (Program Elective-II)					CREDITS			
MCVCAS	MCVCASEPET 105A Advanced Prestressed Concrete				3				
	Teaching Work Load/week(Hrs.)				Examination Scheme(Marks)				
Theory	Tutorial	Laboratory	Total	ISE MSE ESE		Ξ	Total		
3	0	0	3	20 20 60			100		

Cours	Course Outcomes: Students will be able to		
CO1	Understand the preliminary concept, terminologies and methodologies related to prestressed concrete.		
CO2	Analyse and design of the anchor blocks.		
CO3	Analyse the PSC member for flexural, shear strength and deflection.		
CO4	Design the simple and indeterminate structures like continuous beams and portal frames.		
CO5	Analyse and design composite section and various slabs		

Course Contents

Module 1	Introduction to Prestressed Concrete	Hrs. 6	
Basic Principle o	Basic Principle of Prestressing, Methods and Systems of Prestressing, Material Requirements, Losses of		
Prestressing, Anal	Prestressing, Analysis of Rectangular, Symmetrical and Unsymmetrical, Flanged Beams, Concept of Cable		
Profile, Pressure I	Profile, Pressure Line, Thrust Lines, etc.		
Module 2	Design of Anchor Blocks	Hrs. 6	

Department of Civil Engineering, DBATU, Lonere.20 | P a g e

Design of Anchor Blocks using Magnel's Method, Guyon's Method and IS Code Method			
Module 3	Analysis and Design of PSC Members	Hrs.8	
Analysis of PSC se	ction for Flexural Strength, Shear Strength and Deflection, Design of Prestressed Conc	rete section	
for Flexural Strengt	h by Analytical procedure and Magnel's Graphical method, Shear Strength and Deflect	ion, Design	
of Statically Indeter	rminate Beams and Single Story Portal Frame, Concordant Cable Profile		
Module 4	Composite Section	Hrs.8	
Analysis and Design of Composite Construction of Prestressed and in-situ Concrete Structures, Design of			
One way and Two	-way Slab, Grid Slab. Design of Various PSC Structures- Design of Cylindrical	and Non-	
cylindrical Pipes,	Design of Poles, Circular Prestressing for Water Tanks, Design of Sleepers.		
Module 5	Causes and Remedies of Various Defects in PSC	Hrs.8	
Causes of various Defects in Prestressed Concrete like Cracking, Buckling, Deflection, Deterioration,			
Corrosion of Prestressing Steel, Concrete Crushing at End Anchorages, Grouting of Post Tensioned Tendons,			
Congested Connections, Dimensional Tolerances etc. and Remedial Measures.			

Guid	Guidelines for Assignments:		
1	The candidate shall perform minimum Six assignments consisting theoretical as well as numerical aspects of the Course.		
2	One assignment based on visit to any of the prestressed concrete plant or ongoing site involving prestressed concrete activities is desirable.		
3	Use of IS 456-2000 and IS 1343 is allowed in the theory examination.		
4	The necessary charts for design of anchor blocks by various methods shall be provided in the question paper.		

Text B	Text Books:		
1	N. Krishnaraju, Prestressed Concrete, Tata Mc Graw-Hill Publishing Company.		
2	T. Y. Lin & Nedbhurns, Design of Prestressed Concrete Structures, John Wiley & Sons		
3	S.Ramamruthm, Pretsressed Concrete, Dhanpat Rai and Sons.		
4	Sinha and Roy, Fundamentals of Prestressed Concrete, S. Chand Ltd.		
5	N. Rajagopalan, Prestressed Concrete, Narosa Publishing House		

Reference Books:		
1	James R. Libby, Modern Prestressed Concrete, CBS Publishers & Distributors Pvt. Ltd.	
2	IS 1343: 2012, Indian Standard Code of Practice for Prestressed Concrete.	
3	IS 784: 2001, Indian Standard Code for Circular Prestressing in prestressed concrete pipes	

SUBJE	ECT CODE		(Program	m Elective-II)			C	REDITS
MCVCA	SEPET 105B	De	sign of Ma	asonry Str	uctures			3
	Teaching Wo	ork Load/week(Hrs	s.)		Examination Sc	heme(Mar	ks)	
Theory	Tutorial	Laboratory Total		ISE	MSE	ESE		Total
3	0	0	3	20	20	60		100

Cours	Course Outcomes: Students will be able to		
CO1	Understand the preliminary information of various masonry structures including materials of		
	construction, basic properties and parameters.		
CO2	Understand the compressive strength of masonry structures under various conditions and situation.		
CO3	Determine strength of masonry structure in flexure, shear, bond and factors affecting.		
CO4	Design the load bearing masonry buildings.		
CO5	Design the earthquake resistant masonry structures.		

Module 1	ntroduction	Hrs. 6			
Masonry units, Mat	Masonry units, Materials and Types, History of Masonry Characteristics of Brick, Stone, Clay Block,				
Concrete Block, S	Concrete Block, Stabilized Mud Block Masonry units - Strength, Modulus of Elasticity and Water				
Absorption. Masonr	ry materials, Classification and Properties of Mortars, Selection of Mortar.				
Module 2 S	Strength of Masonry in Compression	Hrs. 8			
Behaviour of Masor	nry under Compression, Strength and Elastic Properties, Influence of Masonry	unit and			
Mortar Characterist	tics, Effect of Masonry unit Height on Compressive Strength, Influence of	Masonry			
Bonding Patterns or	n Strength, Prediction of Strength of Masonry in Indian Context, Failure	Theories			
of Masonry under	Compression. Effects of Slenderness and Eccentricity, Effect of Rate of A	bsorption,			
Effect of Curing, Ef	ffect of Ageing, Effect of Workmanship on Compressive Strength.				
Module 3 F	Flexural, Shear and Bond Strength	Hrs.8			
Flexural Strength and	Shear Strength of Masonry, Bond between Masonry unit and Mortar, Tests for d	letermining			
Flexural, Shear and I	Bond strengths, Factors affecting Bond Strength, Effect of Bond Strength on C	ompressive			
Strength, Orthotropic	Strength Properties of Masonry in Flexure, Shear Strength of Masonry.				
Module 4 D	Design of Load Bearing Masonry Buildings	Hrs.8			
Permissible Compr	ressive Stress, Stress Reduction and Shape Reduction Factors, Increase in Pe	ermissible			
Stresses for Eccentric Vertical and Lateral Loads, Permissible Tensile and Shear Stresses, Effective					
Height of Walls and Columns, Opening in Walls, Effective Length, Effective Thickness, Slenderness					
Ratio, Eccentricity, Load Dispersion, Arching action, Lintels, Wall Carrying Axial Load, Eccentric					
Load with Different Eccentricity Ratios, Wall with Openings, Free standing Wall, Design of Load					
Bearing Masonry fo	or Buildings up to 3 to 8 Storey's using BIS Codal Provisions.				

Module 5	Earthquake Resistant Masonry Buildings	Hrs.8	
Behaviour of mas	Behaviour of masonry during earthquakes, concepts and design procedure for earthquake resistant masonry,		
BIS Codal provisi	ions. Masonry arches, domes and vaults: Components and classification of mason	nry arches,	
domes and vaults,	historical buildings, construction procedure.		
Structural Aspect	s of Monuments & Ancient Structures- Evolution of Construction Practices, M	laterials of	
Construction, Cho	pice of Structural Framing, Form Design, Geometric Proportions, Choice of Fo	oundations,	
Footprint Ratio, S	tudy of any Four Historical Monuments from Structural point of view.		

Guidelines for Assignments:	
1	The candidate shall perform minimum Six assignments consisting theoretical as well as numerical aspects of the Course.
Text I	Books:
1	Handry A.W. "Structural masonry" Macmillan Education Ltd. 2nd edition

1	Hendry A.W., "Structural masonry", Macmillan Education Ltd., 2nd edition
2	Sinha B.P & Davis S.R., "Design of Masonry structures", E & FN Spon
3	Dayaratnam P, "Brick and Reinforced Brick Structures", Oxford & IBH
4	Curtin, "Design of Reinforced and Prestressed Masonry", Thomas Telford
5	Sven Sahlin, "Structural Masonry", Prentice Hall

Reference Books:					
1	Jagadish K S, Venkatarama Reddy B V and Nanjunda Rao K S, "Alternative Building Materials and				
	Technologies", New Age International, New Delhi & Bangalore				
2	IS 1905: 1987 Indian Standard Code of Practice for Structural Use of Unreinforced Masonry, Bureau				
	of Indian Standards, New Delhi.				
3	SP20 (S&T): 1991, Handbook on Masonry Design and Construction				

SUBJE	ECT CODE	(Program Elective-II)						CREDITS	
MCVCA	SEPET 105C		Offshor	e Structur	res			3	
	Teaching Wo	ork Load/week(Hr		Examination Sc	heme(Ma	rks)			
Theory	Tutorial	Laboratory	Total	ISE	ISE MSE ESE		Ξ	Total	
3	0	0	3	20	20	60		100	

Cours	e Outcomes: Students will be able to
CO1	Understand the preliminary information of various masonry structures including materials of construction, basic properties and parameters.
CO2	Understand the compressive strength of masonry structures under various conditions and situation.
CO3	Determine strength of masonry structure in flexure, shear, bond and factors affecting.
CO4	Design the load bearing masonry buildings.
CO5	Design the earthquake resistant masonry structures.

Department of Civil Engineering, DBATU, Lonere.23 | P a g e

Module 1	Wave Theories	Hrs. 6
Wave generation	process, small and finite amplitude wave theories.	L
Module 2	Forces of Offshore Structures	Hrs. 6
Wind forces, wa	ve forces on vertical, inclined cylinders, structures - current forces and us	e of Morison
equation.		
Module 3	Offshore Soil and Structure Modeling	Hrs. 6
Different types of	offshore structures, foundation modeling, and structural modeling.	
Module 4	Analysis of Offshore Structures	Hrs. 6
Static method of a	nalysis, foundation analysis and dynamics of offshore structures.	I
Module 5	Design of Offshore Structures	Hrs. 6
Design of platfor	ms, helipads, Jacket tower and mooring cables and pipe lines	1

Guidelines for Assignments:					
1	The candidate shall perform minimum Six assignments consisting theoretical as well as numerical aspects of the Course.				

Te	xt Books:
1	Chakrabarti, S.K. Hydrodynamics of Offshore Structures, Computational MechanicsPublications, 1987.
2	Thomas H. Dawson, Offshore Structural Engineering, Prentice Hall Inc Englewood Cliffs, N.J. 1983
3	API, Recommended Practice for Planning, Designing and Constructing Fixed OffshorePlatforms, American Petroleum Institute Publication, RP2A, Dalls, Tex.
4	Wiegel, R.L., Oceanographical Engineering, Prentice Hall Inc, Englewood Cliffs, N.J. 1964.
5	Brebia, C.A.Walker, S., Dynamic Analysis of Offshore Structures, New-nes Butterworths, U.K. 1979.

Reference Books:										
1	Reddy,	D.V.	and	Arockiasamy,	М.,	Offshore	Structures,	Vol.1,	Krieger	Publishing
	Company,Malabar, Florida, 1991									

SUBJE	ECT CODE	(Program Elective-II)					CREDITS	
MCVCA	SEPET 105D		Structur	al Stabili	ity			3
	Teaching Wo	ork Load/week(Hrs	s.)		Examination Sc	heme(Mar	:ks)	
Theory	Tutorial	Laboratory	atory Total ISE MSE ESE			Ξ	Total	
3	0	0	3	20	20	60		100

Course Outcomes: Students will be able to			
CO1	Determine stability of columns and frames		

CO2	Determine stability of beams and plates
CO3	Use stability criteria and concepts for analyzing discrete and continuous system.
CO4	Learn the inelasticity of beams and frames.
CO5	Understand the dynamic stability of structures.

Module 1	Introduction	Hrs. 6					
Concept of stability, Static, dynamic and energy criterion of stability. Flexibility and stiffness criteria, Snap-							
through & post bu	ckling behavior.						
Module 2	Stability of columns Hrs. 6						
Critical load for sta	andard boundary conditions, elastically restrained perfect Columns, effect of trans	verse shear					
in buckling, colun	nns with geometric imperfections, eccentrically loaded columns. Orthogonality	of buckling					
modes. Large defe	ormation theory for columns.						
Module 3	Stability of continuous Beams and Frames	Hrs. 6					
Moment distribution	on and stiffness methods for stability analysis of continuous beam & frames. Differenti	al equations					
for lateral bucking,	lateral buckling of beams in pure bending, lateralbuckling of beams subjected to conce	entrated and					
uniformly distribute	ed forces.						
Module 4	In-elastic stability of Columns	Hrs. 6					
In-elastic buckling	, double modulus theory, tangent modulus theory, Shanleys theory of in-elasti	c buckling,					
eccentrically loaded	l in-elastic columns.						
Module 5Dynamic Stability of StructureHrs. (
Discrete systems,	Lagrange-Hamilton formulation for continuous systems, Stability of continuous	ous system,					
general method fo	r conservative and non-conservative systems						
L							

Guidelines for Assignments:					
1	The candidate shall perform minimum Six assignments consisting theoretical as well as numerical				
	aspects of the Course.				

Te	xt Books:
1	Concrete Technology & Design by R. N. Swamy, Surrey University Press.
2	Special Structural Concrete by Rafat Siddique, Galgotia pub. Pvt. Ltd.
3	Fiber Reinforced Cement Composites by P.N.Balaguru, S.P.Shah, Mc-Graw Gill
4	Fiber Cement and Fiber Concrete by John Wiley and sons.
5	Fracture Mechanics and Structural Concrete by Bhushan L. Karihal Longman Scientific and Technical Wiley and sons.

SUBJE	CT CODE							CREDITS
MCVCA	MCVCASEELL 106 CASE-I Laboratory			2				
	Teaching Work Load/week(Hrs.) Examination Scheme(Mark				rks)			
Theory	TutorialLaboratoryTotalISEMSEESE			Ξ	Total			
0	0	4	2	25		25		50

Students are expected to develop small programs for Analysis & Design of Various Structural Elements by using excel spread sheets or any programming language (minimum 10 Programs)

SUBJE	CT CODE			T 1 .				CREDITS
MCVCA	SEELL 107	CASE-II Laboratory					2	
	Teaching Work Load/week(Hrs.) Examination Scheme(Mark				rks)			
Theory	Tutorial	Laboratory	Total	ISE MSE ESI			Ξ	Total
0	0	4	2 25 25			50		

Course Contents

Students are expected to Analysis and Design 3D Multistory RCC Structure by using any Software with Modeling of Shear wall.

SUBJE	CT CODE		2					CREDITS
MCVCAS	MCVCASEHMT 108 Communication Skill			2				
	Teaching Work Load/week(Hrs.) Examination Scheme(Mark				rks)			
Theory	eory Tutorial Laboratory Total ISE MSE ESE		Ξ	Total				
2	0	0	2	25		25		50

Cours	Course Outcomes: Students will be able to			
CO1	Understand the preliminary information of various masonry structures including materials of			
	construction, basic properties and parameters.			
CO2	Understand the compressive strength of masonry structures under various conditions and situation.			
CO3	Determine strength of masonry structure in flexure, shear, bond and factors affecting.			
CO4	Design the load bearing masonry buildings.			
CO5	Design the earthquake resistant masonry structures.			

Module 1	Language for Technical Purpose and Presentation Tools	Hrs.6
	ulary, Sentence structures, Microsoft office, Graphical presentations,	
	dience, Use of presentation tools, Presentation, nonverbal techniques, handlin	•
-	-	g questions,
Demo presentatio		
Module 2	Formal Written Communication	Hrs. 3
Drafting Letters, e	-Mails, Memos, Notices, Circulars, Schedules.	
Module 3	Project Research Proposals and Reports	Hrs.6
Research Proposal:	Essentials, Abstract, Aims, Background & significance, Design & methods, Writi	ng a sample
proposal.Project Re	eport: Types of reports, Planning a report, Collection & organization of information,	Structure &
style, Proofreading	etc. Writing a sample report.	
Module 4	Project Research Proposals and Reports	Hrs.6
Research Proposa	l: Essentials, Abstract, Aims, Background & significance, Design & methods,	Writing a
sample proposal.	Project Report: Types of reports, Planning a report, Collection & organ	ization of
information, Struc	ture & style, Proofreading etc. Writing a sample report.	
Module 5	Business Meetings	Hrs.6
Understanding ro	le of meetings, planning meetings, developing meeting agendas, scheduling	g meetings,
conducting meetin	gs effectively, Taking notes and publishing minutes and concluding meetings, a	ction plans,
Demo meetings.		

Text I	Text Books:					
1	S. Hariharan, et.al. Soft Skills; MJP Publishers, 2010.					
2	John Seely, Oxford Guide to Effective Writing and Speaking; Oxford University Press, 2009.					
3	Thomas N. Huckin and Leslie A. Olsen, Technical Writing and Professional Communication					
4	for Nonnative Speakers of English; Tata McGraw Hills, International Edition, 1991.					
5	Jeff Butterfield,Soft Skills for Everyone,cengage Learning India Private Limited,2010					

Refere	Reference Books:					
1	L. Ann Masters & Harold R. Wallace, Personal Development for Life & Work, 10e, Cengage					
2	Learning India Private Limited,2011.					

SUBJE	CT CODE	VOC	VOGA for Strong Management CREDITS			Strang Managamant			
MCVCA	SEAUP 109	YOGA for Stress Management			AUDIT				
	Teaching Work Load/week(Hrs.) Examination Scheme(Marks)				ks)				
Theory	Tutorial	Laboratory	Total	ISE MSE ESE			3	Total	
0	0	2	2	AU AU AU				AU	

Course Objectives Understand the physiological and psychological aspects of stress and its impact on overall well-CO1 being. Learn and practice specific yoga postures, breathing exercises, and relaxation techniques to alleviate CO2 stress. Explore the connection between mindfulness, meditation, and stress reduction, fostering mental CO3 clarity. Discover holistic practices that promote better sleep, nutrition, and overall lifestyle habits for stress CO4 management. CO5 Develop practical skills to manage stress in daily life, enhancing resilience and promoting emotional balance.

Cours	e Outcomes: Students will be able to
CO1	Recognize the signs and sources of stress, understanding its effects on mental and physical well-being.
CO2	Master a variety of yoga techniques, including postures, breathing, and meditation, to effectively manage stress.
CO3	Acquire relaxation strategies that promote calmness, reduce anxiety, and enhance overall mental clarity.
CO4	Incorporate healthy habits inspired by yoga principles to foster better sleep, nutrition, and self-care routines.
CO5	Develop practical skills to navigate and cope with stress, enhancing emotional balance and promoting a more harmonious life.

Module 1	Introduction to Yoga for Stress Management	Hrs. 6				
Stress according	Stress according to Western perspective Stress Eastern Perspective Developmental process: Western and					
Eastern Perspectiv	ve Stress Hazards and Yoga					
Module 2	Module 2Meeting the challenges of StressHrs. 6					
Introduction to Str	ress Physiology Stress, Appetite and Dietary management- Modern and Yogic p	perspective				
Sleep and Stress: u	understanding the relationship for effective management of stress					
Module 3Stress Assessment methodsHrs. 6						
A valuable tool to	oward stress management Role of Yoga in prevention and management of str	ess related				
disorders – a summ	disorders – a summary of research evidence Concept of stress and its management - perspectives from Patanjali					
Yoga Sutra - Part 1/Part 2/ Part 3						
Module 4	Stress Management	Hrs.6				

Concept of stress and its management - perspectives from Bhagavad Gita - Part 1 / Part 2 / Part 3

Module 5	Yoga practices for Stress Management	Hrs. 8				
Bio-Psycho-Socio	Bio-Psycho-Socio-Spiritual model of stress management Yoga practices for Stress Management Breathing					
practices, Asana	practices- Tadasana, Ardhakati Chakrasana, Ardha Chakrasana, Trikonasana, V	rikshasana,				
Vakarasana, Jan	u Sirshasana, Ushtrasana, Sashankasana, Ardhamatseyndrasana, Paschim	ottanasana,				
Poorvottanasana,	Gomukhasana, Makarasana, Bhujangasana, Salambha Shalabahasana, Dh	nanurasana,				
Setubandhasana, S	arvangasana, Mastyasana, Deep Relaxation Technique (DRT),etc.					

Text	Books:
1	H R Nagendra and R Nagarathna. Yoga for Promotion of Positive Health. Swami Vivekananda Yoga Prakashana. 2011.
2	Contrada, R., & Baum, A. (Eds.). The handbook of stress science: Biology, psychology, and health. Springer Publishing Company. 2010
3	Al'Absi, M. (Ed.). Stress and addiction: Biological and psychological mechanisms. Elsevier. 2011.
4	Van den Bergh, O. Principles, and practice of stress management. Guilford Publications. 2021.
5	Swami Muktibodhananda, Hatha Yoga Pradipika, Bihar Scool of Yoga, 1998

Refer	Reference Books:						
1	Swami Satyananda Saraswati, Four Chapters on Freedom, Bihar Scool of Yoga, 1975						
2	Swami Tapasyananda, Srimad Bhagavat Gita, Sri Ramakrishna Math, 2012						
3	NPTEL Course-Yoga for Stress Management-Dr H R Nagendra, Dr Mithila M V, Dr Rajesh Nair,Swami Vivekananda Yoga Anusandhana Samsthana https://onlinecourses.swayam2.ac.in/aic23_ge10/preview#:~:text=In%20this%20course%20we %20intend,meeting%20the%20 challenges%20of%20stress						

SUBJE	CT CODE							CREDITS
MCVCA	MCVCASEELP 207 Mini Project						4	
	Teaching Work Load/week(Hrs.)				Examination Sc	heme(Ma	rks)	
Theory	Tutorial	Laboratory Total ISE MSE ESE				Ξ	Total	
0	0	8	4	25		25		50

Course Contents

Guidelines for Mini Project

Mini project shall be based on one of the topic chosen in consultation with the supervisor. Mini project may be interdisciplinary nature. Areas of recent techno-management development shall be explored. Research innovations may be considered as prospective areas. Mini project may be related with main project to explore possibilities of continuation further and to study the pre-requisites.

SUBJE	CT CODE		2 ~	1			C	CREDITS
MCVCAS	SEHMT 208	History o	f Structura	al Enginee	rıng In Inc	11a		2
	Teaching Work Load/week(Hrs.)				Examination Sc	heme(Ma	rks)	
Theory	Tutorial	Laboratory	Total	ISE	MSE	ESH	Ξ	Total
2	0	0	2	20 20 60			100	

Cours	Course Outcomes: Students will be able to				
CO1	Understand the foundational techniques of urban planning, masonry, and drainage systems in				
	ancient Indian civilizations.				
CO2	Analyze temple architecture styles and Islamic engineering techniques, focusing on load-bearing				
	elements and material usage.				
CO3	Evaluate structural innovations during the Mughal and early European colonial periods, including				
	dome construction and advanced masonry.				
CO4	Examine the impact of British engineering on Indian infrastructure, including bridge and dam				
	construction techniques.				
CO5	Assess modern advancements in high-rise construction, sustainable practices, and adherence to				
	Indian structural codes.				

Module 1	Iodule 1Ancient Structural EngineeringHrs. 6						
Indus Valley Civilization: Urban planning, drainage systems, brick masonry, load-bearing walls, and water							
management.							
Vedic and Early	Iron Age: Early wooden structures, iron usage in tools and construction, and re	ferences in					
Vedic texts to mat	erials and methods.						
Mauryan Period	: Pillar construction techniques, stone masonry, Mauryan stupas (e.g., Sanchi S	Stupa), and					
rock-cut structures	5.						
Material Analysi	s: Baked bricks, mud mortar, wood, and early stone carving.						
Module 2	Medieval Structural Engineering	Hrs. 6					
Temple Architecture (South and North India):							
• Dravidian	Style: Structural design of temples (e.g., Brihadeeswara Temple), granite	usage, and					
techniques	in constructing gopurams.						
Nagara St	• Nagara Style: Stonework, shikhara structures, load transfer methods, and buttress walls.						
Early Islamic Ar	Early Islamic Architecture: Introduction of arches, domes, vaulting techniques, and lime mortar (e.g., Qutb						
Minar, Delhi).							
Material Analysis: Advanced stone masonry, use of lime, brick, and mortars							
Module 3Early Modern Period EngineeringHrs. 6							
Mughal Structural Engineering:							
• Structural features of the Taj Mahal: symmetrical dome construction, load distribution, and marble							

inlay techniques.

• Forts and Palaces: Large-scale stone masonry, multi-story structures, and integration of gardens and water channels.

European Influence: Early European fortifications, use of brickwork, lime mortar, and stone foundations.

Material and Structural Analysis: Sandstone, marble, brick masonry, and techniques for stability in large structures.

Module 4	Colonial Period and Early Modern Structural Practices	Hrs.6						
Railway Bridges and Infrastructure: Design and engineering of iron and steel railway bridges (e.g., Pamban								

Bridge), cantilever and truss systems.

Hydraulic Structures: Dams and canals (e.g., Mullaperiyar Dam), early concrete use, gravity dam design principles.

Educational Institutions: Role of engineering colleges (e.g., Thomason College), influence of British standards and codes.

Material and Structural Analysis: Iron, steel, concrete, brick, and foundations for industrial architecture.

Module 5	Post-Independence Structural Engineering Developments	Hrs.10
----------	---	--------

National Infrastructure Projects: Large dams (e.g., Bhakra Nangal), concrete technology advancements, reinforced concrete (RC) design.

Urbanization and High-rise Structures: Evolution of high-rise buildings, metro structures, and earthquakeresistant design.

Sustainable Building Practices: Modern materials, green construction techniques, sustainable structural engineering in urban projects.

Standards and Professional Bodies: Overview of IS codes, development of seismic and wind load standards, and role of organizations (e.g., Institution of Engineers).

Guidelines for Assignments:

The candidate shall perform minimum six assignments consisting theoretical as well as numerical aspects of the Course.

Text	Text Books:				
1	Indian Architecture (Buddhist and Hindu Periods)" by Percy Brown				
2	Temples of South India by K.R. Srinivasan				
3	The Art and Architecture of India by Benjamin Rowland				
4	Engineering the Pyramids of India: Ancient to Modern by Nitin Kanwar				
5	Mughal Architecture: An Outline of Its History and Development (1526-1858)" by Catherine B. Asher				

Refer	Reference Books:				
1	Building Jaipur: The Making of an Indian City by Vibhuti Sachdev and Giles Tillotson				
2	Bridge Engineering by S.P. Bindra				
3	A History of Architecture on the Comparative Method, by Banister Fletcher				
4	Concrete Technology: Theory and Practice by M.S. Shetty				
5	Indian Dams and Irrigation Engineering by K.C. Jain and P.L. Shah				

Dr. Babasaheb Ambedkar Technological University, Lonere Teaching & Evaluation Scheme for M. Tech. in Civil Engineering with Specialization in Computer Aided Structural Engineering

Sr. No.	Course Code	Course Title		Code Course Title		<u> </u>	Evaluation Scheme				
				Т	Р	ISE	MSE	ESE	Total		
		Semester- II									
1	MCVCASEPCT 201	Theory of Plates and Shells	3			20	20	60	100	3	
2	MCVCASEPCT 202	Finite Element Analysis	3			20	20	60	100	3	
3	MCVCASEPET 203	Program Elective- III	3			20	20	60	100	3	
4	MCVCASEPET 204	Program Elective- IV	3			20	20	60	100	3	
5	MCVCASEOET 205	Open Elective-V	3			20	20	60	100	3	
6	MCVCASEELL 206	CASE-III Laboratory			4	25	-	25	50	2	
7	MCVCASEELL 207	Mini Project			4	25	-	25	50	2	
8	MCVCASEHMT 208	Indian Knowledge System	2			20	20	60	100	2	
		Total	17	0	12	170	120	410	700	23	

Type of course:

Program Core: PC	Program Elective: PE				
Open Elective: OE (Other than particular program)	Ability Enhancement Course: AE				
Modern Indian Language: MIL	Humanities, Management, language and Commerce: HM				
Experiential Learning Courses: EL	Multidisciplinary Minor Courses: MD				
ABBRIVATIONS: ISE-INSEMESTER EVALUATION, MSE-MID SEMESTER EVLUATION, ESE -END SEMESTER EVALUATION					

SUBJE	ECT CODE	-	51 01		1 11		C	REDITS
MCVCA	ASEPCT 201	'	heory of	Plates & Shells			3	
	Teaching Wo	Teaching Work Load/week(Hrs.) Examination Scheme(Marks)						
Theory	Tutorial	Laboratory	Total	ISE	MSE	ESH	Ξ	Total
3	0	0	3	20	20	60		100

Cours	e Outcomes: Students will be able to
CO1	Understand and derive governing differential equation for deflected shape of rectangular plates.
CO2	Solve governing differential equation of deflected shape of rectangular plate for various loading and
CO3	Understand and derive governing differential equation for deflected shape of circular plates.
CO4	Solve governing differential equation of deflected shape of circular plate for various loading and
CO5	Understand membrane theory for internal forces in different shells.

Module 1	Introduction to Plate Theory	Hrs. 8
Thin and Thick P	lates, Small and Large Deflection Theory of Thin Plate, Assumptions in Analy	sis of Thin
Plates, Slope Curv	vature Relations, Moment - Curvature Relations, Stress Resultants, Governing I	Differential
Equations for Ber	iding of Plates, Various Boundary Conditions.	
Module 2	Navier's and Levy's Solution	Hrs. 6
Rectangular Plate	s Subjected to Uniformly Distributed Load, Sinusoidal Load for Different	Boundary
Conditions.		
Module 3	Circular Plates	Hrs.8
Analysis of Circula	ar Plates under Axis-Symmetric Loading, Moment Curvature Relations, Governing	Differential
Equation in Polar C	Co-Ordinates, Simply Supported and Fixed Edges, Distributed Load, Ring Load, a Plat	e with Hole
at Center.		
Module 4	Introduction to Shell Structures	Hrs.8
Classification of	f Shells on basis of Geometry, Thin Shell Theory, Equation of Shell	Surfaces,
Stress Resultant	s, Stress- Displacement Relations, Compatibility and Equilibrium Equations	
Module 5	Membrane Analysis	Hrs.12
Equation of Equil	ibrium for Synclastic Shells, Solution for Shells Subjected to Self-Weight and	Live Load,
Cylindrical Shells	-Equation of Equilibrium, Open Shells with Parabolic, Circular, Elliptical Direct	rix, Simple
Problems, Shells	with Closed Directrix-Circular, Elliptical-Simple Problems, Problems on Pipe	es Carrying
Fluid/Liquid Und	er Pressure, Just Filled & Partly Filled. Symmetrically Loaded Circular Cylindr	ical Shells,
Beam Theory, Fin	sterwalder's Theory, D.K.J. Theory- Donnell's Equation, Characteristic Equation	, Schorer's
Theory.		

Guidelines for Assignments:

The candidate shall perform minimum six assignments consisting of theoretical as well as numerical aspects of the course.

Text	Books:
1	Theory of Plates and Shells by S. S. Bhavikatti, New Age International Publishers Limited.
2	Design of Reinforced Concrete Shells and Folded plates by P.C. Varghese, PHI Learning Private Limited, New Delhi (2010).
3	Design and Construction of Concrete Shell Roofs by G.S. Rama Swamy – CBS Publishers & Distributors, Delhi
4	S. Timoshenko and W. Krieger, Theory of Plates and Shells, Mc Grew Hill.
5	Ansel C. Ugural, Stresses in Plates and Shells, Mc Graw Hill.

Refer	ence Books:
1	Reddy, J. N.; Theory and Analysis of Elastic Plates and Shells, Taylor & Francis
2	G. S Ramaswamy, Design and Construction of Concrete Shell Roofs, CBS Publications.
3	Chandrashekhara K., Analysis of Concrete Shells, New Age International Edition.
4	Chandrashekhara K., Analysis of Plates, New Age International Edition.
5	ASCE Manual of Engineering practice No. 31, Design of cylindrical concrete shell roofs ASC, New
	York

SUBJE	CT CODE		E ::4. E1		1		C	CREDITS
MCVCA	SEPCT 202		Finite Elei	ment Metr	100			3
	Teaching W	ork Load/week(Hr	s.)		Examination Sc	heme(Ma	rks)	
Theory	Tutorial	Laboratory	Total	ISE	MSE	ESH	Ξ	Total
3	0	0	3	20	20	60		100

Cours	e Outcomes: Students will be able to
CO1	Understand the different energy methods in structural analysis and basic concepts of finite element method.
CO2	Analyse 1-D problems related to structural analysis like Bars, Trusses, Beams and Frames using finite element approach.
CO3	Find solution to problems using direct approach methods like Rayleigh – Ritz or Galerkin's Method.
CO4	Solve 2-D problems using knowledge of theory of elasticity.
CO5	Students will be able to implement the knowledge of numerical methods in FEM to find the solution to the various problems in statics and dynamics, Analyse 1D, 2D, and 3D structures using different

Module 1	Introduction to FEM & Approximate Methods	Hrs. 8
Introduction, Ove	erview of Various Methods to Solve Integral & Differential Equations (Point G	Collocation
Method, Method	of Least Square, Weighted Residual Method, Galerkin's Method), Variationa	al Calculus
(Hamilton's Vari	ational Principle, Minimum Potential Energy Principle, Euler Lagrange Equati	on), Partial
FEM (Kentorvich	n Method/ Finite Strip Method/ Semi-Analytical Method), Local & Global Finite	ite Element
Methods (Rayleig	h-Ritz Method), Stepwise Procedure in FEM	
Module 2	One Dimensional FE Analysis	Hrs. 10
Application of FE	M to Solve various 1-D problems (Shape Functions for 1-D Elements, Propertie	es of Shape
Functions, Lagrar	ge Interpolating Polynomials), C0 Continuity, 1-D FE Analysis (Discretization, S	Selection of
Shape Function, I	Defining Gradients of Primary Unknowns & Constitutive Equations, Derivation	of Element
Equations, Asser	nbly & Application of Boundary Conditions, Computation of Primary and	Secondary
Unknowns), Dire	ct Approach for Assembly, Boundary Conditions (Geometric, Natural), Conce	ept of Sub-
Structuring (Stati	c Condensation), Stiffness Matrix for Basic Bar & Beam Element, Repres	entation of
Distributed Loadi	ng, The Assembly Process within the PMPE Approach, Element Stresses), FE	Analysis of
1-D Non-Prismati	c Members, Solution of Differential Equation using FEM, Solution of BIVP using	Galerkin's
MWR (1-D Trans	ient Analysis).	
Module 3	FE Analysis by Direct Approach	II
	r E Analysis by Direct Approach	Hrs.6
	ormulation of 1-D Beam Element, Classical Beam Theory, Element Equation	
C1 Continuity, Fo		Formulation
C1 Continuity, Fo (Galerkin's Approa	ormulation of 1-D Beam Element, Classical Beam Theory, Element Equation	Formulation
C1 Continuity, Fo (Galerkin's Approa	ormulation of 1-D Beam Element, Classical Beam Theory, Element Equation 1 ach, Rayleigh-Ritz Approach), Derivation of Scalar Functional from Differential Equation	Formulation
C1 Continuity, Fo (Galerkin's Approa Versa, Application Module 4	ormulation of 1-D Beam Element, Classical Beam Theory, Element Equation 1 ach, Rayleigh-Ritz Approach), Derivation of Scalar Functional from Differential Equati to Fixed and Continuous Beams.	Formulation ion and Vice Hrs.10
C1 Continuity, Fo (Galerkin's Approa Versa, Application Module 4 Conditions of Syn	ormulation of 1-D Beam Element, Classical Beam Theory, Element Equation 1 ach, Rayleigh-Ritz Approach), Derivation of Scalar Functional from Differential Equati to Fixed and Continuous Beams. Two Dimensional FE Analysis	Formulation ion and Vice Hrs.10 Elasticity,
C1 Continuity, Fo (Galerkin's Approa Versa, Application Module 4 Conditions of Syn CST Element (3-	ormulation of 1-D Beam Element, Classical Beam Theory, Element Equation 1 ach, Rayleigh-Ritz Approach), Derivation of Scalar Functional from Differential Equation to Fixed and Continuous Beams. Two Dimensional FE Analysis mmetry & Anti Symmetry (Applications), 2-D FE Analysis, Review of Theory of	Formulation ion and Vice Hrs.10 Elasticity, , Stepwise
C1 Continuity, Fo (Galerkin's Approx Versa, Application Module 4 Conditions of Syn CST Element (3- Formulation, Equ	ormulation of 1-D Beam Element, Classical Beam Theory, Element Equation 1 ach, Rayleigh-Ritz Approach), Derivation of Scalar Functional from Differential Equation to Fixed and Continuous Beams. Two Dimensional FE Analysis nmetry & Anti Symmetry (Applications), 2-D FE Analysis, Review of Theory of Node Triangular Element), Pascal's Triangle and Pyramid, Area Co-ordinate	Formulation ion and Vice Hrs.10 Elasticity, , Stepwise lysis using
C1 Continuity, Fo (Galerkin's Approx Versa, Application Module 4 Conditions of Syn CST Element (3- Formulation, Equ 4-noded Rectang	ormulation of 1-D Beam Element, Classical Beam Theory, Element Equation 1 ach, Rayleigh-Ritz Approach), Derivation of Scalar Functional from Differential Equation to Fixed and Continuous Beams. Two Dimensional FE Analysis nmetry & Anti Symmetry (Applications), 2-D FE Analysis, Review of Theory of Node Triangular Element), Pascal's Triangle and Pyramid, Area Co-ordinate, ivalent Load Vector, Plane Stress Problems using CST Elements, 2-D Stress Anal	Formulation Formulation ion and Vice Hrs.10 Elasticity, Stepwise lysis using plicit Iso-
C1 Continuity, Fo (Galerkin's Approx Versa, Application Module 4 Conditions of Syn CST Element (3- Formulation, Equ 4-noded Rectang parametric Formu	ormulation of 1-D Beam Element, Classical Beam Theory, Element Equation 1 ach, Rayleigh-Ritz Approach), Derivation of Scalar Functional from Differential Equation to Fixed and Continuous Beams. Two Dimensional FE Analysis nmetry & Anti Symmetry (Applications), 2-D FE Analysis, Review of Theory of Node Triangular Element), Pascal's Triangle and Pyramid, Area Co-ordinate, ivalent Load Vector, Plane Stress Problems using CST Elements, 2-D Stress Anal ular Element, Stepwise Formulation, Effect of Aspect Ratio, Explicit & Im	Formulation Formulation ion and Vice Hrs.10 Elasticity, Stepwise lysis using plicit Iso- t, Bilinear
C1 Continuity, Fo (Galerkin's Approx Versa, Application Module 4 Conditions of Syn CST Element (3- Formulation, Equ 4-noded Rectang parametric Formu Element, Para-lin	ormulation of 1-D Beam Element, Classical Beam Theory, Element Equation 1 ach, Rayleigh-Ritz Approach), Derivation of Scalar Functional from Differential Equation to Fixed and Continuous Beams. Two Dimensional FE Analysis nmetry & Anti Symmetry (Applications), 2-D FE Analysis, Review of Theory of Node Triangular Element), Pascal's Triangle and Pyramid, Area Co-ordinate, ivalent Load Vector, Plane Stress Problems using CST Elements, 2-D Stress Anal ular Element, Stepwise Formulation, Effect of Aspect Ratio, Explicit & Im ulation, Iso-parametric Elements for Plane Problems (Quadrilateral Element)	Formulation Formulation ion and Vice Hrs.10 Elasticity, Stepwise lysis using plicit Iso- t, Bilinear Element),
C1 Continuity, Fo (Galerkin's Approx Versa, Application Module 4 Conditions of Syn CST Element (3- Formulation, Equ 4-noded Rectang parametric Formu Element, Para-lin	ormulation of 1-D Beam Element, Classical Beam Theory, Element Equation 1 ach, Rayleigh-Ritz Approach), Derivation of Scalar Functional from Differential Equation to Fixed and Continuous Beams. Two Dimensional FE Analysis nmetry & Anti Symmetry (Applications), 2-D FE Analysis, Review of Theory of Node Triangular Element), Pascal's Triangle and Pyramid, Area Co-ordinate, ivalent Load Vector, Plane Stress Problems using CST Elements, 2-D Stress Analular Element, Stepwise Formulation, Effect of Aspect Ratio, Explicit & Im ular Element, Bi-Quadrilateral Element, Serendipity Elements, Lagrange	Formulation Formulation ion and Vice Hrs.10 Elasticity, Stepwise lysis using plicit Iso- t, Bilinear Element),
C1 Continuity, Fo (Galerkin's Approx Versa, Application Module 4 Conditions of Syn CST Element (3- Formulation, Equ 4-noded Rectang parametric Formu Element, Para-lin Numerical Integra Module 5	Image: Construction of the problem is the problem	Formulation Formulation ion and Vice Hrs.10 Elasticity, Stepwise lysis using plicit Iso- t, Bilinear Element), n Element Hrs.12
C1 Continuity, Fo (Galerkin's Approa Versa, Application Module 4 Conditions of Syn CST Element (3- Formulation, Equ 4-noded Rectang parametric Formu Element, Para-lin Numerical Integra Module 5 3-D Stress Analys	Image: Section 11 prmulation of 1-D Beam Element, Classical Beam Theory, Element Equation 1 ach, Rayleigh-Ritz Approach), Derivation of Scalar Functional from Differential Equation to Fixed and Continuous Beams. Two Dimensional FE Analysis nmetry & Anti Symmetry (Applications), 2-D FE Analysis, Review of Theory of Node Triangular Element), Pascal's Triangle and Pyramid, Area Co-ordinate, ivalent Load Vector, Plane Stress Problems using CST Elements, 2-D Stress Anal ular Element, Stepwise Formulation, Effect of Aspect Ratio, Explicit & Im ulation, Iso-parametric Elements for Plane Problems (Quadrilateral Element near Element, Bi-Quadrilateral Element, Serendipity Elements, Lagrange ation, (1-D Domain, 2-D Domain, n-point Gauss Rule), Formulation of Transition Three Dimensional FE Analysis & Computer Implementation of FEM	Formulation Formulation ion and Vice Hrs.10 Elasticity, Stepwise lysis using plicit Iso- t, Bilinear Element), n Element Hrs.12 D Analysis,

h-version of FEM, p-version of FEM, Adaptive Meshing, Exposure to Hybrid FEM (Mixed/ Hybrid Formulation, Unidirectional Composites), Introduction to ANSYS, Static & Dynamic Analysis of 1-D, 2-D and 3-D structures using ANSYS.

Guidelines for Assignments:

The candidate shall perform minimum six assignments consisting theoretical as well as numerical aspects of the course.

Text	Books:
1	M. Mukhopdhyay, Concept and Application of Finite Element Analysis, Oxford and IBH Publishing Co. Pvt. Ltd.
2	O.C.Zienkiewicz & R.L.Taylor, The Finite Element Method Vol .I & II, Tata McGraw Hill
3	J.N.Reddy, An introduction to the Finite Element Method, Tata McGraw Hill Pub.
4	R. D. Cook, Concept and Application of Finite Element Analysis, John Wiley & sons
5	Hutton D.V., Fundamentals of Finite Element Analysis, Tata McGraw Hill Pub.

Refere	ence Books:
1	C. S. Desai & J. F. Abel, Introduction to the Finite Element Method, CBS Pub.
2	C. S .Krishnamoorthy, Programming in the Finite Element Method, Tata McGraw Hill
3	T.R.Chandrupatla and Belegundu, Introduction to the Finite Element in Engineering Prentice Hall of India, pvt.ltd
4	Bathe K.J., Finite Element Procedures, PHI learning pvt.ltd
5	Y. M. Desai, T.I Eldho, Finite Element Method with application in Engineering, Pearson, Delhi

SUBJE	ECT CODE	(Program Elective-III)				(Program Electi		(Program Elective-III)		(CREDITS
MCVCAS	SEPET 203A	Design	of Cold Fo	ormed Ste	el Structur	es		3			
Teaching Work Load/week(Hrs.)			s.)		Examination Sc	heme(Mai	rks)				
Theory	Tutorial Laboratory Total ISE MSE ESE		Ξ	Total							
3	0	0	3	20	20	60		100			

Cours	e Outcomes: Students will be able to		
CO1	Understand the types of cross sections, mechanical and thermal properties and applications of cold		
	formed steel structures.		
CO2	Understand the design criteria and strength of thin elements and analyse various cross section		
	for strength in tension, compression, flexure, etc.		
CO3	Design the CFS flexural members.		
CO4	Design the CFS compression members.		
CO5	Design the CFS members subjected to axial load and bending. Study and design various types of connections in cold formed steel structures.		

Module 1	Introduction	Hrs. 8			
General, Types of	f Cold-Formed Steel Sections and Their Applications, Standardized Metal Bu	ildings and			
Industrialized Housing, Methods of Forming, Research and Design Specifications, General Design					
Considerations of	Cold-Formed Steel Construction, Economic Design and Optimum Properties, Y	ield Stress,			
Tensile Strength,	and Stress-Strain Curve, Modulus of Elasticity, Tangent Modulus, and Shea	r Modulus,			
Ductility, Weld al	bility, Fatigue Strength and Toughness, Influence of Cold Work on Mechanical	Properties			
of Steel, Utilizati	on of Cold Work of Forming, Effect of Temperature on Mechanical Propertie	es of Steel,			
Testing of Full Se	ections and Flat Elements, Residual Stresses Due to Cold Forming, Effect of Stre	ain Rate on			
Mechanical Prop	erties.				
Module 2	Strength of Thin Elements & Design Criteria	Hrs. 8			
Definitions of Te	erms, Design Basis, Serviceability, Structural Behaviour of Compression Ele	ements and			
Design Criteria, P	erforated Elements and Members, Plate Buckling of Structural Shapes, Design	Examples.			
Module 3	Design of Axially Loaded Members	Hrs. 10			
Design of axially le	oaded tension members, Flexural Column Buckling, Torsional Buckling and Flexura	al–Torsional			
Buckling, Effect of	f Local Buckling on Column Strength, Distortional Buckling Strength of Compression	n Members,			
Effect of Cold W	Vork on Column Buckling, North American Design Formulas for Concentrica	illy Loaded			
Compression Merr	bers, Effective Length Factor K, Built-Up Compression Members, Bracing of Axia	ally Loaded			
Compression Mem	bers, Design Examples.				
Module 4	Design of Flexural Members	Hrs.6			
Bending Strength a	and Deflection, Design of Beam Webs, Bracing Requirements of Beams, Torsional	analysis of			
Beams and Combin	ned Bending and Torsional Loading, Design Examples.				
Module 5	Design of Members under Combined Axial Load & Bending	Hrs.10			
Combined Tensile	e axial load and Bending, Combined Compressive axial load and Bending (Beam-	-Columns),			
North American Design Criteria, Design Examples, Second-Order Analysis.					
Design of Connections :Types of Connectors, Welded Connections, Bolted Connections, Types of					
Connectors, Welded Connections, Bolted Connections, Screw Connections, Other Fasteners, Rupture Failure					
of Connections, I or Box-Shaped Compression Members Made by Connecting Two C-Sections, I-Beams					
Made by Connect	Made by Connecting Two C-Sections, Spacing of Connections in Compression Elements.				

Guidelines for Assignments:

The candidate shall perform minimum Six assignments consisting theoretical as well as numerical aspects of the Course.

Reference Books:					
1	W.W. Yu, "Cold-Formed Steel Design", John Wiley & Sons.				
2	IS 801: 1975, Code of Practice for Use of Cold Formed Light Gauge Steel Structural Members in General Building Construction.				
3	BS 5950-5:1998, Structural Use of Steelwork in Building: Code of Practice for Design of Cold Formed Thin Gauge Sections.				

SUBJE	ECT CODE	(Program Elective-III)			(Program Elective-III)		(Program		C	CREDITS
MCVCA	SEPET 203B					3				
	Teaching Work Load/week(Hrs.)				Examination Sc	heme(Mai	rks)			
Theory	Tutorial	Laboratory Total ISE MSE ESE			E	Total				
3	0	0	3	20	20	60		100		

Cours	Course Outcomes: Students will be able to			
CO1	Understand factors of Serviceability and Durability of Structures.			
CO2	Determine crack width, effect of crack on materials, effect of moisture on structures.			
CO3	Understand methods for protection of steel structures and masonry structures.			
CO4	Understand various materials and methodologies used for repairing of structures.			
CO5	Understand and implement techniques used for repairing and maintenance of structure			

Module 1	le 1 Serviceability and Durability Hrs. 6				
Quality Assurance for Concrete Construction, Permeability, Thermal Properties and Cracking, Distress					
Monitoring, Cause	Monitoring, Causes for Distress, Effects of Climate, Temperature, Chemicals, Wear and Erosion, Design and				
Construction Erro	rs, Corrosion Mechanism, Effects of Cover Thickness and Cracking,				
Non-Destructive	Testing: Ultrasonic and Sonic Test, Rebound Hammer Test, Strength Eva	aluation of			
Existing Structure	S.				
Module 2	Module 2Cracks in StructuresHrs. 6				
Causes, Thermal and Shrinkage cracks, Cracks due to Vegetation and Trees, Foundation Movements, Types					
and their Fatality,	Diagnosis Techniques for Repair.				
Moisture Penetra	Moisture Penetration				
Sources of Dampness, Moisture Movement from Ground, Reasons for Ineffective Damping, Leakage in					
Concrete Slabs, Pitched Roofs, Dampness in Solid Walls, Condensation, Remedial treatments, Chemical					
Coatings.					
Module 3Steel Structures and MasonryHrs. 10					

		-				
Types and Causes	of Deterioration,	Preventive Measures,	Repair Procedure	, Brittle Failure,	Defects in C	onnections,

Welded Joints: Test for Defects; Mechanism of Corrosion, Methods of Corrosion Protection, Corrosion Inhibitors, Corrosion Resistant Steels, Coatings, Cathodic Protection. Design and Fabrication Errors, Distress during Erection. Masonry Structures Discoloration and Weakening of Stones, Preservation, Chemical Preservatives, Brick Masonry Structures, Distress and Remedial Measures.

Module 4 Materials for Repairs

Hrs.6

Essential Parameters for Repair Material, Premixed Cement Concrete and Mortar, Sulphur Infiltrated Concrete, Fiber Reinforced Concrete, Special Elements for Accelerated Strength Gain, Expansive Cement, Polyester Resin.

Polymer Concrete: Physical and Mechanical Properties, General Guidelines and Precautions for Use, Field Application

Polymer Modified Concrete: Physical and Mechanical Properties, General Guidelines and Precautions for Use, Field Application, Epoxy Concrete and Mortar: Epoxies, Physical and Mechanical Properties, General Guidelines and Precautions for Use, Field Application.

Surface Coatings: Essential Parameters, Types, Characteristics.

Module 5	Maintenance and repair strategies	Hrs.6	
Definitions: Main	tenance, Repair and Rehabilitation, Facets of Maintenance, Importance of Ma	aintenance,	
Preventive Measures on Various Aspects Inspection, Assessment Procedure for Evaluating a Damaged			
Structure, Causes	of Deterioration, Testing Techniques. Repairs using Mortars and Dry Packs	, Concrete	
Replacement, Sur	face Impregnation, Rust Eliminators and Polymers Coating for Rebar During Rep	air Foamed	

Concrete, Vacuum Concrete, Gunite and Shotcrete, Injection: Epoxy, Resin, Polymer Modified Cement Slurry;Shoring and Underpinning. Strengthening of Super Structures (Beam, Column, Slab including Joints) for Tension, Compression, Flexural, and Shear respectively, Jacketing (RCC, Plate, Fiber, Wrap), Bonded Overlays, Reinforcement Addition, Strengthening the Substructures, Increasing the Load Capacity of Footing, Strengthening of Masonry Structure.

Guidelines for Assignments:

The candidate shall perform minimum six assignments consisting theoretical as well as numerical aspects of the course.

Text	Books:
1	Johnson. S.M., "Deterioration, maintenance and repair of structures", McGraw-Hill book company, New York, 1965.
2	R. T. Allen and S. C. Edwards, "Repair of concrete structures", Blakie and Sons, UK, 1987.
3	Denison Campbell, Allen and Harold Roper, "Concrete structures", Materials, Maintenance and Repair, Longman Scientific and technical UK, 1991.
4	SP25-84, "Hand book on causes and prevention of cracks on buildings", Indian standards.
5	M. S. Shetty, "Concrete Technology- Theory and Practice", S. Chand and Company, New Delhi, 1992

Department of Civil Engineering, DBATU, Lonere.40 | P a g e

Refere	Reference Books:		
1	Santhakumar, A.R., " Training Course notes on Damage Assessment and repair in Low Cost		
	Housing "," RHDC-NBO " Anna University, July, 1992.		
2	Raikar, R.N., "Learning from failures – Deficiencies in Design ", Construction and Service – R &		
	D Centre (SDCPL), Raikar Bhavan, Bombay, 1987		

SUBJE	ECT CODE					CR	EDITS	
(Program Elective-III) MCVCASEPET 203C Glass in Building: Design And Application			3					
	Teaching Work Load/week(Hrs.) Examination Scheme(Marks)			(s)				
Theory	Tutorial	Laboratory Total ISE MSE ESE		ESE		Total		
3	0	0	3	20	20	60		100

Cours	Course Outcomes: Students will be able to	
CO1	Understand Glass as a building material, its various applications and benefits.	
CO2	Understand process of selection of glass	
CO3	Learn about daylighting in building.	
CO4	Analyse the glass processing.	
CO5	Design and analyze the suitable façade based on drawings.	

Module 1	Introduction	Hrs. 6			
Introduction – Gla	Introduction – Glass the Building Material, Float Glass Manufacturing Process, coatings on glass, glass design				
for coating, sustai	nability and aesthetics				
Module 2	Design Tools for Glass Selection	Hrs. 6			
Structural Control	and Design for Energy efficiency, Design Tools for Glass Selection, Buildin	g,Envelope			
Design, Innovatio	ns in Glass Future Facades, Standards Related to Glass				
Module 3	Useful Daylighting in Building	Hrs. 8			
Fundamentals of	Daylighting, Daylighting Strategies Techniques, ECBC and Green Building Re	quirements,			
Introduction to Day	light Simulation, Daylighting Controls, Achieving Acoustics Through Glass				
Module 4	Glass Processing	Hrs. 6			
Glass Processing	Glass Processing Overview, Interior Glazing Program, Interior Glazing Applications Shower Enclosure,				
Glass in Passive F	Fire Protection, Glazing Choices for Project Segment, National Building Code 2	016			
Module 5	Module 5Applications of GlassHrs. 10				
Glass in Passive Fire Protection, Glazing Choices for Project Segment Silicone for Structural Glazing, Role of					
Windows in Building Design, Fire Resistant Glazing, Interior Glazing Applications, Design and application					
of sealant. Facade Fundamentals, Glass Application on Facades, Energy Efficiency Facade System, Structural					

Design of Facades, Facade Factory Operations, Performance Testing for Facades, Sustainable Building and Facades.

Text B	Text Books:		
1	Structural Glass: Hugh Dutton, Peter Rice: 9780419199403		
2	Structural Glass Facades and Enclosures, Mic Patterson; ISBN: 978-0-470-93185-1		
3	Joseph S. Amstock"s Glass in Construction (McGraw-Hill, 1997)		
4	Envelope Design for Buildings ISBN 0750628545 by William Allen		
5	Thomas Herzog, "Facade Construction Manual." Birkhauser, 2004		

Refer	Reference Books:		
1	Glass in Architecture ISBN 0714829226 by Michael Wigginton		
2	FOSG Architectural Guide		
3	Glass Academy Foundation Manual Volume – I		
4	Glass Academy Foundation Manual Volume – II		
5	Glass Academy Foundation Manual Volume - III		

SUBJECT CODE			(Program	n Elective-I	III)		CREDITS
MCVCASEPET 203 D			quake Eng thquake R	Č Č	& Design of tructures	of	3
	Teaching Work Load/week(Hrs.)				Examination Sc	heme(Marks)	
Theory	Theory Tutorial Laboratory Total ISE MSE ESE		ESE	Total			
3	0	0	3	20	20	20 60 100	

Cours	Course Outcomes: Students will be able to		
CO1	Understand Engineering Seismology and Seismic zones in India.		
CO2	Understand earthquake response of SDoF Linear systems and instrumentation in measurement of		
CO3	Understand factors resisting earthquake forces, and earthquake risk analysis.		
CO4	Perform Seismic Analysis of buildings as per IS 1893.		
CO5	Understand, analyse and Design structural elements and its ductile detailing using IS 13920.		

Module 1	Introduction to Seismology	Hrs. 6	
Elements of Seis	smology, Terminology, structure of Earth, Causes of an earthquake, seisn	nic waves,	
magnitude and intensity, seismograph, strong motion earthquake, strong motion earthquake, accelerogram,			
Elastic Rebound T	Elastic Rebound Theory, Theory of Plate Tectonics and Movement of Indian Plate, Seismic Zoning Maps of		

India and Comparative Study, Response Spectra, Strong Motion Characteristics.

Module 2	Earthquake Response of Systems	Hrs. 6		
Structural dyna	nics: Free and forced vibrations of single degree of freedom systems, un-damped an	d viscously		
damped vibrati	ons, equations of motion, Duhamel integral. Response Spectrum Theory: cons	struction of		
Design Respons	e Spectrum, effect of foundation and structural damping on design spectrum, design	n spectrum		
of IS 1893, eva	uation of lateral loads.			
Module 3	le 3 Earthquake Risk Analysis Hrs. 6			
Earthquake Effe	Earthquake Effects on the Structures, Classification of Loads, Seismic Methods of Analysis, Seismic Design Methods,			
Seismic Damages during Past Earthquakes and Effect of Irregularities and Building Architecture on the Performance				
of RC Structures	of RC Structures, Mathematical Modeling of Multi-Storied RC Buildings with Modeling of Floor Diaphragms and			
Soil-Foundation	Winkler model.			
Module 4	Analysis of Seismic Forces	Hrs.10		
Analysis of Sei	smic Forces on Building as per latest IS: 1893 by Equivalent Static Lateral Load M	Method and		
Response Spectrum Method, Introduction to Time History Method and Performance Based Analysis.				
Seismic Retrofitting. Sources of Weakness in RC Framed Buildings. Classification of Retrofitting				

Seismic Retrofitting, Sources of Weakness in RC Framed Buildings, Classification of Retrofitting Techniques, Conventional and Non-Conventional Methods, Comparative Study of Various Methods and Case Studies,

Module 5	Ductility in Structures	Hrs.10	
Introduction to Du	actility, Factors Affecting Ductility, Ductility Requirements, Types of Ductility,	Provisions	
as per latest IS 13	920, Seismic Design and Ductile Detailing of Beam, Column, Beam Column J	oint, Shear	
Wall, Elevated RC Circular Water Tanks			
Introduction to Ba	ase Isolation Systems, IS Code Provisions for Retrofitting of Masonry Structur	es, Failure	
Modes of Masonry Structures and Repairing Techniques			

Guidelines for Assignments:

The candidate shall perform minimum six assignments consisting theoretical as well as numerical aspects of the course.

Text B	Books:
1	P. Agarwal and M. Shrikhande – Earthquake Resistant Design of Structures, Prentice-Hall
	Publications.
2	Clough and Penzin – Dynamics of Structures, Mc-Graw Hills Publications.
3	Jai Krishna, A.R. Chandrashekharan and B Chandra – Elements of Earthquake Engineering, South
	Asian Publishers Pvt. Ltd.
4	Joshi P S et al Design of Reinforced Concrete Structures for Earthquake
5	Resistance Published by Indian Society of Structural Engineers, 2001.

Department of Civil Engineering, DBATU, Lonere.43 | P a g e

Refere	Reference Books:		
1	IS:13935 – Repair and Seismic Strengthening of Buildings – Guidelines, 1993		
2	IS:4326 – Earthquake Resistant Design and Construction of Buildings – Code of Practice, 1993		
3	IS:13828 – Improving Earthquake Resistance of Low Strength Masonry Buildings, 1993		
4	IS:13827 - Improving Earthquake Resistance of Earthen Buildings, 1993		
5	IS:13920 - Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic		
	Force,1993		

SUBJECT CODE (Program		n Elective-IV)			CREDITS			
MCVCASEPET 204 A]	Design of		/			3
	Teaching Work Load/week(Hrs.)				Examination Sci	heme(Mar	·ks)	
Theory Tutorial		Laboratory	Total	ISE	MSE	ESE	Ξ	Total
3	0	0	3	20	20	60		100

Cours	Course Outcomes: Students will be able to		
CO1	CO1 Identify and calculate magnitude of various loads acting on tall buildings.		
CO2	Understand various forms of structures, moment and force resisting systems in a structure.		
CO3	Identify various factors causing movements /twists in the building and their analysis and design.		
CO4	Understand various types of chimneys, their components, Analyse and design of chimneys.		
CO5	Understand various types of Cooling Towers, their components & feasibility, analyse and design a Cooling Tower		

Module 1	Design Loads	Hrs. 6	
Gravity Loads, D	ead Load and Live Load Reduction, Construction Loads, Wind Load, Equival	ent Lateral	
Force, Combination	on of Loadings, Design Philosophy: Working Stress Design and Limit State Des	ign	
Module 2	Structural Systems and its Behaviour	Hrs. 6	
Height and Struct	ural Forms, Rigid Frames, Braced Frames, In-Filled Frames, Shear Walls, Cou	pled Shear	
Walls, Tubular Str	ructures, and Hybrid Mega Systems		
Module 3	Tall Buildings	Hrs. 6	
Approximate Anal	Approximate Analysis, Detail Analysis and Reduction Techniques, Analysis of Member Forces, Drift, and Twist,		
Buckling Analysis,	Buckling Analysis, P-Delta Analysis, Translational and Torsional Instability, Design for Differential Movements,		
Creep and Shrinkag	Creep and Shrinkage, Structural Control and Energy Dissipation Devices.		
Module 4	Chimneys	Hrs.6	
Design Factors, Thermal Stresses, Components, Platform and Safety Ladders, Steel Stacks, Refractory			
Linings, Caps and Foundations.			

Module 5	Cooling & Transmission Towers	Hrs.6

Types, Components, Analysis and Design. Types of Loads, Tower Configuration, Analysis and Design

Guidelines for Assignments:

The candidate shall perform minimum six assignments consisting theoretical as well as numerical aspects of the course.

Text	Text Books:		
1	B. S. Taranath, Structural Analysis and Design of Tall Building, CRC press, 2011.		
2	B. S. Smith and A. Coull, Tall Building Structures: Analysis and Design, Wiley, 1991.		
3	S. N. Manohar, Tall Chimneys: Design and Construction, Tata Mcgraw-Hill, 1985.		
4	A. R. Shanthakumar and S. S. Murthy, Transmission Line Structures, Tata Mcgraw-Hill, 1990.		
5	IS: 6533 (Part 2): 1989, - Code of Practice for Design and Construction of Steel Chimneys IS 4998 (Part 1): 1992, -Criteria for Design of Reinforced Concrete Chimneys.		

SUBJE	ECT CODE	(Program Elective-IV)		CREDITS				
MCVCASEPET 203B			ν U	of Foundat	/			3
	Teaching Work Load/week(Hrs.)				Examination Sc	heme(Mar	·ks)	
Theory Tutorial Laboratory Total		ISE	MSE	ESE	3	Total		
3	0	0	3	20	20	60		100

Cours	Course Outcomes: Students will be able to		
CO1	Compute bearing capacity and settlement of foundation		
CO2	Design shallow and deep foundation		
CO3	Suggest remedial measure for foundation on expansive soil.		
CO4	Analyse and design sheet piles		
CO5	Design simple machine foundation by using IS code method		

Module 1	Bearing capacity	Hrs. 8		
Empirical equations for bearing capacity (Terzaghi, IS code, Skempton"s Meyerhof, Hansen, Vesic).				
Bearing capacity	Bearing capacity of footing with inclined load, eccentric load. Effect of water table on bearing capacity.			
Bearing capacity	Bearing capacity of rocks. Settlement - Immediate and consolidation settlements in cohesive soil, settlement			
prediction in non- cohesive soil. Allowable settlement.				
Module 2	Module 2 Shallow Foundation Hrs. 6			

Proportioning of fo	poting (isolated, wall footing, combined rectangular and combined trapezoidal, str	ap footing)
Mat foundation, t	ypes of mats, design consideration and various methods of analysis of mat. Fl	oating raft
concept and design	1.	

Module 3	Deep foundation	Hrs. 8	
Mechanics of load	Mechanics of load transfer in piles, determination of capacity of single pile, rock socketing, negative skin friction,		
design of axially lo	aded pile, design of pile groups, design of pile group subjected to eccentric load (Ax	ial load and	
moment) Design of	f pile cap. Settlement of pile group.		
Module 4	Sheet piles and braced excavations	Hrs.6	
Types and uses of	Types and uses of sheet piles, design of cantilever sheet pile walls, design of anchored bulkhead, Anchorage		
method, Design o	method, Design of Braced sheeting in cuts.		
Introduction to ex	Introduction to expansive soil, Types of damage and cracks in buildings on expansive soil. Principles of		
design of foundati	design of foundations in expansive soil.		
Module 5	Module 5Introduction to Machine FoundationHrs. 6		
Soil behavior under dynamic loads, Permissible amplitude, criteria for satisfactory machine foundations,			
introduction to analysis and design of simple machine foundations using I. S. Code method.			

Text	Text Books:				
1	Foundation Engineering by P.C. Varghese (Prentice hall of India)				
2	Analysis and Design of Substructures by Swami Saran (Oxford and IBH Publishing)				
3	Foundation Analysis and Design Bowles J.E. (McGraw Hill Book Company)				
4	Design Aids in Soil Mechanics and Foundation Engineering Shenbage R Kaniraj, TATA Mc- Grawhill				
5	Design of Foundation Systems- Nainan P Kurian, Narosa publication house				

Refere	Reference Books:				
1	Design of Reinforced Concrete Foundations by Varghese P.C (Prentice hall of India)				
2	Design of Reinforced Concrete Structures by N Subramanian				
3	Limit state theory and Design of Reinforced concrete – Dr. V. L. Shah and Dr. S R Karve (Structures Publications)				

SUBJECT CODE (Program Elective-IV)					CREDITS		
MCVCASEPET 203C Structural audits			3				
	Teaching Wo	ork Load/week(Hrs	5.)	Examination Scheme(Marks)			
Theory	Tutorial	Laboratory	Total	ISE MSE ESE			Total
3	0	0	3	20 20 60			100

Cours	e Outcomes: Students will be able to
CO1	Gain the knowledge of Byelaws, procedure of Structural audit and study the typical problems in
CO2	Aware of causes and types of deterioration in structures.
CO3	Develop skills for use of various Non destructive tests required during auditing of structures.
CO4	Strength evaluation of existing structures.
CO5	Acquire knowledge of legal procedure to conduct structural audits ad report preparation.

Department of Civil Engineering, DBATU, Lonere.46 | P a g e

Introduction to Structural Audit, Objectives, Bye-laws, Importance, Various Stages involved, Visual inspection: scope, coverage, limitations, Factors to be keenly observed.Detailed Study of: RC frame and Masonry building: Structural and non structural system, Structural elements concrete and its texture, sag and deflection in members, cracks: types and its fatality, Architectural features like balconies, cornices, etc their vulnerabilities, Probable damages in Structural and non structural walls, Plaster and paint Leakages and seepages, Plinth importance and how it affects suitability of building, Electric wiring: various damages and their fatality.Steel Structures: Corrosion, Connection defects, Connection strength, yielded memberModule 2Causes and types of deterioration in StructuresHrs. 6Causes of deterioration in RC frame and Masonry building: Permeability of concrete, capillary porosity, air voids, Micro cracks and macro cracks, corrosion of reinforcing bars, sulphate attack, alkali silica reaction,. Causes of deterioration in Steel Structures: Uniform deterioration, pitting, crevice, galvanic, laminar, Erosion, cavitations, fretting, Exfoliation, Stress, Causes of corrosion in various members, causes of defects in				
Detailed Study of: RC frame and Masonry building: Structural and non structural system, Structural elements concrete and its texture, sag and deflection in members, cracks: types and its fatality, Architectural features like balconies, cornices, etc their vulnerabilities, Probable damages in Structural and non structural walls, Plaster and paint Leakages and seepages, Plinth importance and how it affects suitability of building, Electric wiring: various damages and their fatality.Steel Structures: Corrosion, Connection defects, Connection strength, yielded memberModule 2Causes and types of deterioration in StructuresHrs. 6Causes of deterioration in RC frame and Masonry building: Permeability of concrete, capillary porosity, air voids, Micro cracks and macro cracks, corrosion of reinforcing bars, sulphate attack, alkali silica reaction,. Causes of deterioration in Steel Structures: Uniform deterioration, pitting, crevice, galvanic, laminar, Erosion, cavitations, fretting, Exfoliation, Stress, Causes of corrosion in various members, causes of defects in				
concrete and its texture, sag and deflection in members, cracks: types and its fatality, Architectural featureslike balconies, cornices, etc their vulnerabilities, Probable damages in Structural and non structural walls,Plaster and paint Leakages and seepages, Plinth importance and how it affects suitability of building, Electricwiring: various damages and their fatality.Steel Structures: Corrosion, Connection defects, Connectionstrength, yielded memberModule 2Causes and types of deterioration in StructuresHrs. 6Causes of deterioration in RC frame and Masonry building: Permeability of concrete, capillary porosity, airvoids, Micro cracks and macro cracks, corrosion of reinforcing bars, sulphate attack, alkali silica reaction,.Causes of deterioration in Structures: Uniform deterioration, pitting, crevice, galvanic, laminar, Erosion,cavitations, fretting, Exfoliation, Stress, Causes of corrosion in various members, causes of defects in				
like balconies, cornices, etc their vulnerabilities, Probable damages in Structural and non structural walls, Plaster and paint Leakages and seepages, Plinth importance and how it affects suitability of building, Electric wiring: various damages and their fatality.Steel Structures: Corrosion, Connection defects, Connection strength, yielded memberModule 2Causes and types of deterioration in StructuresHrs. 6Causes of deterioration in RC frame and Masonry building: Permeability of concrete, capillary porosity, air voids, Micro cracks and macro cracks, corrosion of reinforcing bars, sulphate attack, alkali silica reaction,. Causes of deterioration in Structures: Uniform deterioration, pitting, crevice, galvanic, laminar, Erosion, cavitations, fretting, Exfoliation, Stress, Causes of corrosion in various members, causes of defects in				
Plaster and paint Leakages and seepages, Plinth importance and how it affects suitability of building, Electric wiring: various damages and their fatality.Steel Structures: Corrosion, Connection defects, Connection strength, yielded member Module 2 Causes and types of deterioration in Structures Hrs. 6 Causes of deterioration in RC frame and Masonry building: Permeability of concrete, capillary porosity, air voids, Micro cracks and macro cracks, corrosion of reinforcing bars, sulphate attack, alkali silica reaction,. Causes of deterioration in Steel Structures: Uniform deterioration, pitting, crevice, galvanic, laminar, Erosion, cavitations, fretting, Exfoliation, Stress, Causes of corrosion in various members, causes of defects in				
wiring: various damages and their fatality.Steel Structures: Corrosion, Connection defects, Connection strength, yielded memberModule 2Causes and types of deterioration in StructuresHrs. 6Causes of deterioration in RC frame and Masonry building: Permeability of concrete, capillary porosity, air voids, Micro cracks and macro cracks, corrosion of reinforcing bars, sulphate attack, alkali silica reaction,. Causes of deterioration in Steel Structures: Uniform deterioration, pitting, crevice, galvanic, laminar, Erosion, cavitations, fretting, Exfoliation, Stress, Causes of corrosion in various members, causes of defects in				
Module 2 Causes and types of deterioration in Structures Hrs. 6 Causes of deterioration in RC frame and Masonry building: Permeability of concrete, capillary porosity, air voids, Micro cracks and macro cracks, corrosion of reinforcing bars, sulphate attack, alkali silica reaction,. Causes of deterioration in Steel Structures: Uniform deterioration, pitting, crevice, galvanic, laminar, Erosion, cavitations, fretting, Exfoliation, Stress, Causes of corrosion in various members, causes of defects in				
Module 2Causes and types of deterioration in StructuresHrs. 6Causes of deterioration in RC frame and Masonry building: Permeability of concrete, capillary porosity, air voids, Micro cracks and macro cracks, corrosion of reinforcing bars, sulphate attack, alkali silica reaction,. Causes of deterioration in Steel Structures: Uniform deterioration, pitting, crevice, galvanic, laminar, Erosion, cavitations, fretting, Exfoliation, Stress, Causes of corrosion in various members, causes of defects in				
Causes of deterioration in RC frame and Masonry building: Permeability of concrete, capillary porosity, air voids, Micro cracks and macro cracks, corrosion of reinforcing bars, sulphate attack, alkali silica reaction,. Causes of deterioration in Steel Structures: Uniform deterioration, pitting, crevice, galvanic, laminar, Erosion, cavitations, fretting, Exfoliation, Stress, Causes of corrosion in various members, causes of defects in				
voids, Micro cracks and macro cracks, corrosion of reinforcing bars, sulphate attack, alkali silica reaction,. Causes of deterioration in Steel Structures: Uniform deterioration, pitting, crevice, galvanic, laminar, Erosion, cavitations, fretting, Exfoliation, Stress, Causes of corrosion in various members, causes of defects in				
Causes of deterioration in Steel Structures: Uniform deterioration, pitting, crevice, galvanic, laminar, Erosion, cavitations, fretting, Exfoliation, Stress, Causes of corrosion in various members, causes of defects in				
cavitations, fretting, Exfoliation, Stress, Causes of corrosion in various members, causes of defects in				
connection (bolted and welded), Cracks.				
Module 3Non Destructive TestingHrs. 8				
Concrete Strength Assessment: Rebound hammer, Ultrasonic Pulse velocity, Penetration resistance, Pull out test,				
Chemical test: Carbonation test, Chloride test, Corrosion potential assessment: Cover meter survey, half cell potential,				
resistivity measurement, Fire damage assessment: Differential thermal analysis, X ray diffraction, Structural				
Integrity and soundness assessment: Radiography, Impact echo test, dynamic testing of structure,				
Interpretation and evaluation of test results.				
Module 4Strength Evaluation of Existing StructureHrs.6				
Reserve strength, identification of critical sections, structural system and its validation, evaluation of damage				
in concrete and reinforcement, evaluation of building configuration.				
Module 5Approach to conduct Structural Audits & Report preparationHrs. 10				
Guidelines of Statutory Bodies, Legal aspects, Responsibility of calling Structural Audit, Scope of				
Investigation, Involvement of Original Consultants & Representatives of Statutory Bodies, Frequency of				
Structural Audits. Draft Structural audit report for up-gradation of existing building, Audit for				
continuation of usage of old Buildings, Audit for Buildings damaged due to Flood, Earthquakes, Fire,				
Storms/cyclones, Landslides, Cloud Burst, Tsunamis and accidental events such as blasts/ wilful damages.				

Refere	Reference Books:			
1	Indian Standard codes related with nondestructive testing.			
2	Government Resolutions related to Structural Audits (BMC Act, etc.)			
3	Field manuals and reports by Expert Consultants.			

SUBJE	SUBJECT CODE (Program Elective-IV)						CREDITS
MCVCASEPET 203D		Optin	Optimization in Structural Design			3	
	Teaching Wo	ork Load/week(Hrs	5.)	Examination Scheme(Marks)			
Theory	Tutorial	Laboratory	Total	ISE MSE ESE		Total	
3	0	0	3	20	20	60	100

Cours	e Outcomes: Students will be able to
CO1	Use variational principle for optimization
CO2	Apply optimization techniques to structural steel and concrete members
CO3	Apply Linear optimization technique
CO4	Apply nonlinear optimization technique
CO5	Acquire knowledge of Geometric programming.

Module 1	Introduction	Hrs. 6			
Objective optimiz	zation, problem formulation, problem types, constrained and unconstrained	problems,			
implications of ri	sk & uncertainly mathematical programming, general problems of linear and	nonlinear			
programming.					
Module 2	Linear Programming	Hrs. 6			
-Standard linear p	programming form, definitions and theorem, simplex method- Algorithm canor	nical form,			
improving the bas	is, identifying an optimal solution, locating initial basic feasible solution, example	es.			
Module 3	Application of Linear Programming	Hrs. 8			
Problems on structural design trusses, plastic analysis of frame, weight minimization, transportation problem,					
duality, decomposition, parametric linear programming, integer linear programming examples.					
Module 4	Non-linear optimization	Hrs.6			
Classical optimiz	zation techniques differential calculus- Language multipliers, Newtons	Raphson			
approximation, K	uhn Tucker conditions, examples. (06 Lectures)				
Module 5	Geometric programming	Hrs. 8			
Calculus viewpoint, polynomials, orthogonality conditions, degree of difficulty, geometric inequality, primal-					
dual relations, inequality constraints, examples. Search techniques- altering, one dimensional or sectioning					
search, transforming nonlinear problem into linear cutting-plane method, logarithmic transformation,					

graphical optimization, examples. Examples on minimum route problem, minimum cost, minimum weight, optimum design of R.C.C. sections, Structural design-frame, trusses.

Reference Books:					
1	Foundation of Optimization by Wilde & Beighter				
2	Optimization Theory & Applications by S.S. Rao				
3	Optimization in Structures by Hemp.				
4	Mechanical foundation for design by Stark and Nicholls, Mc Graw Hill				

SUBJECT CODE (Open Electiv			Elective-V			C	REDITS	
MCVCAS	SEOET 205 A		< I	Methodo				3
	Teaching Wo	ing Work Load/week(Hrs.) Examination Scheme(Marks)						
Theory	Tutorial	Laboratory	Total	ISE	MSE	ESH	Ξ	Total
3	0	0	3	20	20	60		100

Cours	e Outcomes: Students will be able to
CO1	Understand concept of research, its types, methods, detailed procedure to identify and solve a
CO2	Understand various mathematical techniques useful in research work.
CO3	Understand various sampling techniques useful in research work.
CO4	Understand various techniques for correlating and predicting different parameters with each other
CO5	Design the experiments for research work.

Module 1Introduction to Research methodologyHrs. 6					
Introduction, meaning of research, objectives, types and role of scientific and engineering related research					
in advancing the knowledge, defining a research problem, formulation of a hypothesis, research design and					
features of good design, methods of data collection, approaches and techniques for data acquisition					
processing, analyses and synthesis, Designing a questionnaire, Interpretation of results, Report Writing					
Aspects of literature review, Different ways of communication and dissemination of research results.					
Indule 2Descriptive Statistics, Probability and DistributionHrs. 6					
Basic statistical concepts, Measures of central tendency and dispersion, Elements of Probability, Addition and					
multiplication theorems of probability, Examples, probability distributions, Binomial, Poisson and normal					
distributions. Sampling Techniques: Random sampling, simple random sampling and stratified random					
sampling, Non-sampling errors.					
Module 3Correlation and RegressionHrs. 6					

Product moment correlation coefficient and its properties. Simple linear regression and multiple linear regressions, Statistical Inference: Statistical hypotheses, Error Types, level of significance, Chi-square Test and F distributions. Central limit theorem, Tests for the mean, equality of two means, variance, large sample tests for proportions, Confidence interval.

Module 4 Design of Experiments

Hrs.6

Analysis of variance. Data Classification, Completely randomized, randomized block, Factorial experiments, Yates technique.

Module 5Multivariate Data AnalysisHrs.10

Multivariate normal distributions. Mean vector, variance, covariance matrix and correlation matrix, Stepwise regression, Selection of best subject of variables, Classification and discrimination problems, Factor analysis, and Principle component analysis. Data analysis using software's.

Guidelines for Term Work:

Student shall critically read recent three to four journal articles within the broader field of their prospective specializations to identify research and knowledge gaps and accordingly formulate specific research questions. On the basis of these research questions student will retrieve additional relevant information and prepare well- articulated and content rich introductory problem description as well as proposed research methodology notes. The subject teacher and research guide of the student shall assess this jointly.

Text	Books:
1	Gupta S. C. and Kapoor V. K, "Fundamentals of Mathematical Statistics", Sultan Chand & Company New Delhi.
2	Gupta S. C. and Kapoor V. K, "Fundamentals of Applied Statistics", Sultan Chand & Com. N.Delhi.
3	Montogomery D. C., "Probability and Applied Statistics for Engineers", Wiley Int.Student Edition
4	Walpole Ronald E, Myers Raymond H and Myers Sharon L, "Probability & Statistics for Engineers and Scientists", 6 th Edition, Prentice Hall.
5	Ross S. M., "Introduction to Probability and Statistics for Engineers and Scientists", 3rd Edi, Elsevier

Refer	ence Books:
1	Johnson R. and Wichern, "Applied Multivariate Statistical Analysis", 3rd Edi, Prentice Hall India
2	Douben K. J., "Research Methodologies – Principles and Guidelines of Applied Scientific Research", UNESCO-IHE Lecture Notes LN0317/06/01, Delft, the Netherlands.
3	Holtom D. and E. Fisher, "Enjoy Writing Your Science Thesis - a Step by Step Guide to Planning and Writing Dissertations and Theses for Undergraduate and Graduate Science Students", Imperial College Press. ISBN 1-86094-207-5, London, UK.
4	Kumar R., "Research Methodology- a Step-by-step Guide for Beginners", Sage Publi ISBN 0-7619- 6213-1. London, UK.
5	Johnson R. and Wichern, "Applied Multivariate Statistical Analysis", 3 rd Edi, Prentice Hall India

SUBJE	ECT CODE	(Open Elective-V)			(Open Elective-V)		С	REDITS
MCVCAS	SEOET 205 B	Advance concrete Technology				3		
	Teaching Work Load/week(Hrs.)				Examination Sc	heme(Mar	·ks)	
Theory	Tutorial	Laboratory	Total	ISE MSE ESE 7			Total	
3	0	0	3	20	20	60		100

Cours	Course Outcomes: Students will be able to		
CO1	Understand the testing of concrete materials as per IS code.		
CO2	Know the procedure to determine the properties of fresh and hardened of concrete.		
CO3	Design the concrete mix using ACI and IS code methods.		
CO4	Select and Design special concretes depending on their specific applications.		
CO5	Gain ideas on non-destructive testing of concrete.		

Module 1	Ingredients of concrete	Hrs. 6				
Aggregates: Revi	Aggregates: Review of types; sampling and testing; effects on properties of concrete, production of artificial					
aggregates. Ceme	aggregates. Cements: Review of types of cements, chemical composition; properties and tests, chemical and					
physical process o	f hydration, Blended cements					
Module 2	Properties of fresh concrete	Hrs. 6				
Basics regarding f	resh concrete – mixing, workability, placement, consolidation, and curing, segre	gation and				
bleeding Chemica	l Admixtures: types and classification; actions and interactions; usage; effects on	properties				
of concrete. Miner	al Admixtures: Fly ash, ground granulated blast furnace slag, metakaolin, rice- hu	isk ash and				
silica fume; chem	ical composition; physical characteristics; effects on properties of concrete;	advantages				
and disadvantages	. Proportioning of concrete mixtures: Factors considered in the design of mix Bl	S Method,				
ACI method						
Module 3	Properties of hardened concrete	Hrs. 6				
Strength- compres	sive tensile and flexure - Elastic properties - Modulus of elasticity - Creep-factor	rs affecting				
creep, effect of cre	eep - shrinkage- factors affecting shrinkage, plastic shrinkage, drying shrinkage, a	autogenous				
shrinkage, carbona	ation shrinkage.					
Module 4	Durability of concrete	Hrs.6				
Durability concep	t; factors affecting, reinforcement corrosion; fire resistance; frost damage; sulf	fate attack;				
alkali silica reaction; concrete in seawater, statistical quality control, acceptance criteria as per BIS code.						
Non-destructive testing of concrete: Surface Hardness, Ultrasonic, Penetration resistance, Pull- out test,						
chemical testing for	chemical testing for chloride and carbonation- core cutting - measuring reinforcement cover.					
Module 5	Special concretes	Hrs.10				

Department of Civil Engineering, DBATU, Lonere.51 | P a g e

Lightweight concrete- description of various types -High strength concrete - Self compacting concrete -Roller compacted concrete – Ready mixed concrete – Fibre reinforced concrete - polymer concrete Special processes and technology for particular types of structure - Sprayed concrete; underwaterconcrete, mass concrete; slip form construction, Prefabrication technology

Guidelines for Assignments:

The candidate shall perform minimum six assignments consisting theoretical as well as numerical aspects of the Course.

Text Books:				
1	Job Thomas., "Concrete Technology", Cenage learning,			
2	R. Santhakumar " Concrete Technology", Oxford Universities Press, 2006			
3	3 Shetty M. S., Concrete Technology", S. Chand & Co., 2006			

Refer	Reference Books:					
1	Mehta and Monteiro, "Concrete-Micro structure, Properties and Materials", McGraw Hill					
	Professional					
2	Neville A. M. and Brooks J. J., Concrete Technology, Pearson Education, 2010					
3	Lea, Chemistry of Cement and Concrete", Butterworth-Heinemann Ltd, 5e, 2017					
4	Bungey, Millard, Grantham – Testing of Concrete in Structures- Taylor and Francis, 2006					

SUBJE	UBJECT CODE (On an Elective V)			CREDITS				
MCVCAS	SEOET 205 C	(Open Elective-V) Design of Shells & Folded Plates 3			3			
	Teaching Wo	ork Load/week(Hr	s.)		Examination Sc	heme(Mar	ks)	
Theory	Tutorial	Laboratory Total ISE MSE ESE			Total			
3	0	0	3	20	20	60		100

Cours	Course Outcomes: Students will be able to		
CO1	Understand the testing of concrete materials as per IS code.		
CO2	Know the procedure to determine the properties of fresh and hardened of concrete.		
CO3	Design the concrete mix using ACI and IS code methods.		
CO4	Select and Design special concretes depending on their specific applications.		
CO5	Gain ideas on non-destructive testing of concrete.		

Module 1	Design of Shell Roofs, Spherical Domes and Conical Roofs	Hrs. 6				
Introduction, Sele	ction of dimensions of shells, Structural design of shell roofs by Working Stree	ss Method,				
Detailing of Steel	as per IS code, Spherical domes, Design of Ring Beam (Edge Member), Design	1 for Shear				
between Bottom r	ing Beam and Dome, Detailing of Steel, Conical Shell, Conical dome roof with r	ing beams,				
umbrella roof.						
Module 2	Detailing of Steel in Cylindrical Shells	Hrs. 6				
Introduction, Gen	eral arrangement of steel, Minimum amount of steel recommended in shells, Lo	ongitudinal				
steel for Tx forces	and for edge beams, Transverse steel for T Φ and M Φ Forces, Steel for shear S, D	Detailing of				
junction between s	shell and transverse and edge beam, Consumption of steel.					
Module 3	Design of Transverse Stiffeners of Cylindrical Shells	Hrs. 6				
Introduction, Desi	gn of Transverse Stiffeners (Diaphragms) of Long Shells, Supports on Long She	lls on T or				
L Beams Design o	of Supporting Frames, Detailing Junction of Shell and Transverse.					
Module 4	Module 4Design of Paraboloid ShellsHrs.6					
Introduction, Type	es of Hyperbolic Paraboloids, Equation of Hypar Shells with Straight Rectangu	ılar Edges,				
Types Of H.P. She	ell Roofs with Straight Edges, Shallow and Deep H.P. Shells, Analysis of The Sl	nell Part of				
Shallow Hypar Sh	ells with Straight Edges, Analysis of The Edge Members, Supporting Dead Weig	tht of Edge				
Members, Detaili	ng of Steel in Hypar Shells, Oblique Hypar Shells Elliptical and Circular Pa	araboloids,				
Action of Elliptica	al Paraboloids, Shallow Elliptical Paraboloids Curvature and Radius Nature of V	ariation of				
Membrane Forces	h.					
Module 5	Module 5Design of Reinforcements in Folded Plates and Supporting DiaphragmsHrs. 8					
Structural behaviour of trough type folded plate roofs - slab-beam analysis of folded plates - reinforcement in						
folded plates. Introduction, Shear in Folded Plates, Design of steel for Transverse moments, Design of						
Longitudinal Steel, Design of Diaphragm, Detailing of Steel.						

Guidelines for Assignments: The candidate shall perform minimum six assignments consisting theoretical as well as numerical aspects of the Course.

Text	Books:
1	Design of Reinforced Concrete Shells and Folded plates by P.C. Varghese, PHI Learning Private
	Limited, New Delhi (2010).
2	Design and Construction of Concrete Shell Roofs by G.S. Rama Swamy - CBS Publishers &
	Distributors, Delhi.
3	Theory and Design of Concrete Shells by B.K. Chatterjee, Chapmann & Hall, New York,
	3 rd Edition
4	IS 2210 : 1988 (Reaffirmed 2017) Criteria for design of reinforced concrete shell structures and folded

Department of Civil Engineering, DBATU, Lonere.53 | P a g e

plates [CED 38: Special Structures]

Refer	Reference Books:			
1	Theory and Analysis of Plates by R. Szilard, Prentice Hall-INC, New Jersey, (1974).			
2	Analysis of Thin Concrete Shells by K. Chandrasekhara, Oxford and IBH, Kolkata, 1971.			
3	Thin Shell Structures by Bandyopadhyay J.N. New Age International Publishers, New Delhi, 1986.			
4	ASCE Manual of Engineering practice No. 31, Design of cylindrical concrete shell roofs ASC, New			
	York.			
5	https://onlinecourses.nptel.ac.in/noc21_ce59/preview			

SUBJE	CT CODE			. .			(CREDITS
MCVCA	MCVCASEELP 206 CASE-III Laboratory							2
	Teaching Work Load/week(Hrs.) Examination Scheme(Marl						rks)	
Theory	Tutorial	Laboratory	Total	ISE	Ξ	Total		
0	0	4	2	25		25		50

Course Contents

Students are expected to Analysis of Various Structural Elements by using Finite Element Software and Detailing of Structural Elements using various drafting tool

SUBJE	CT CODE								
MCVCA	MCVCASEELP 207 Mini Project							4	
	Teaching Wo	ork Load/week(Hrs	s.)		Examination Sci	heme(Mar	rks)		
Theory	Tutorial	Laboratory	Total	ISE	Ξ	Total			
0	0	8	8 4 25 25						

Course Contents

Guidelines for Mini Project

Mini project shall be based on one of the topic chosen in consultation with the supervisor. Mini project may be interdisciplinary nature. Areas of recent techno-management development shall be explored. Research innovations may be considered as prospective areas. Mini project may be related with main project to explore possibilities of continuation further and to study the pre-requisites.

Dr. Babasaheb Ambedkar Technological University, Lonere Teaching & Evaluation Scheme for M. Tech. in Civil Engineering with Specialization in Computer Aided Structural Engineering

Sr.	Course Code	Course Title		Teaching Scheme		E	Credit			
No.	course coue			Т	Р	ISE	MSE	ESE	Total	Č
		Semester-I	II						•	
1	MCVCASEMDT 301	MOOC/SWAYAM/ NPTEL	3			20	20	60	100	3
2	MCVCASEMDT 302	PLATFORM COURSES/Self Study. (It is	3			20	20	60	100	3
3	MCVCASEHMT 303	desirable to choose one course from each of PE,OE &AE)	3			20	20	60	100	3
4	MCVCASEELP 304	Seminar-I			4	25		25	50	2
5	MCVCASEELP 305	Dissertation Stage -I			20	50		50	100	10
		TOTAL	09		24	135	60	255	450	21
	Semester-IV									
1	MCVCASEELP 401	Dissertation Stage-II			40	100		100	200	20
		TOTAL			20	100		100	200	20

TheoryTutorialLaboratoryTotalISEMSEESE3003202060							
Theory	Tutorial	Laboratory	Total	ISE	Total		
	Teaching Work	k Load/week(Hrs.))		Examination So	cheme(Mar	ks)
MCVCASEMDT 301 MCVCASEMDT 302 MCVCASEHMT 303 MCVCASEHMT 303							
	CT CODE						CREDITS

Course Contents

Multidisciplinary Minor Courses

MOOC/SWAYAM/ NPTEL -Project Management and Intellectual Property Rights (Self Study) Student may select this course either from MOOC/SWAYAM/ NPTEL pool or any other approved reputed source. The submission of course completion certificate is

mandatory. MCVCASEMDT301/302, MCVCASEHMT 303 - Institute has to take care of registration of subjects with detailed syllabus in first two weeks of beginning of the semester with exam department of DABATU.

SUBJ	ECT CODE		Seminar I						
MCVCA	ASEELP 304								
	Teaching Wo	rk Load/week(Hrs	5.)	Examination Scheme(Marks)					
Theory	Tutorial	Laboratory	Total	ISE MSE ESE					
0	0	4	2	25 25					

Guidelines for Seminar

Seminar I shall be presented on one of the advanced topics chosen in consultation with the supervisor. Students must study latest literature. The concepts must be clearly understood and presented by the student. The student should use all modern methods of presentation. The student expects minimum 03 presentations within period of semester. A hard copy of the report should be submitted before delivering the seminar. A copy of the report in soft form must be submitted to the Supervisor along with other details, if any.

SUBJI	ECT CODE		D			CREDITS		
MCVCASEELP 302 Dissertation Stage-I						10		
	Teaching Wo	rk Load/week(Hr	s.)		Examination Sc	heme(Mar	ks)	
Theory	Tutorial	Laboratory	Total	ISE	ESE	l I	Total	
0	0	20	20	50		100		

Course Contents

Dissertation Stage-I

Students can take Industry Internship along with Dissertation Stage –I. Students must maintain regular reporting with Dissertation supervisor regarding status of Dissertation. Dissertation Stage -I is an integral part of the final project work. In this, the student shall complete the partial work of the project which will consist of problem statement, literature review, project overview, scheme of implementation that may include mathematical model/block diagram/ PERT chart, and layout and design of the proposed system/work. As a part of the progress report of project-I work; the candidate shall deliver a presentation on progress of the work on the selected dissertation topic. It is desired to publish the paper on the state of the art on the chosen topic in international conference/ journal. The student shall submit the duly certified progress report of project -I in standard format for satisfactory completion of the work duly signed by the concerned guide and head of the department/institute.

Dr. Babasaheb Ambedkar Technological University, Lonere Teaching & Evaluation Scheme for M. Tech. in Civil Engineering with Specialization in Computer Aided Structural Engineering

Sr.	Course Code	Course Title		Teaching Scheme		E	edit			
No.	Course Coue			Т	Р	ISE	MSE	ESE	Total	Cr
		Semester-I	V							
1	MCVCASEELP 401	Dissertation Stage-II			40	100		100	200	20
				20	100		100	200	20	

SUBJE	CT CODE							REDITS
MCVCA	MCVCASEELP 401 Dissertation Stage-II						20	
	Teaching Wor	k Load/week(Hrs	.)		Examination Sc	heme(Mar	·ks)	
Theory	Tutorial	Laboratory	Total	ISE	3	Total		
0	0	40		200				

Course Contents

Dissertation Stage-II

In Project Stage - II, the student shall complete the remaining part of the project, which will consist of the simulation/ analysis/ synthesis/ implementation / fabrication of the proposed project work, work station, conducting experiments and taking results, analysis and validation of results and drawing conclusions. It is mandatory to publish the paper on the state of the art on the chosen topic in international conference/ journal. The student shall prepare the duly certified final report of project work in standard format for satisfactory completion of the work duly signed by the concerned guide and head of the department/institute.