Course Structure for Degree Program M. Tech. in Civil Engineering

with Specialization in

Structural Engineering

In line with National Education Policy 2020 (Effective from AY 2024-25)

Dr. Babasaheb Ambedkar Technological University Lonere 402 103, Dist- Raigad, Maharashtra, INDIA

Established vide Maharashtra Act No. XXII of 1989 and Act. No. XXIX of 2014 "Vidyavihar", P.O. Lonere, Dist. Raigad, Pin 402 103, Maharashtra, India Telephone and Fax.: 02140 - 275142

www.dbatu.ac.in

Course Structure, Guidelines, Rules and Regulations

Preamble

Economic advancement of a country is closely tied to the quality of technical education it offers. Engineering education is reaching new heights and plays a significant role in the overall education system. The preparation of engineering graduates should focus on enhancing their employability and sustainability in response to evolving industry and societal needs. As technology advances and expectations change rapidly, updating the curriculum to be contemporary and relevant is imperative.

In order to align our technical education system with global standards and practices, based on performance and assessment system was implemented earlier for all Undergraduate Programs (UG). Now as per National

Education Policy-2020 framework we are incorporating project-based learning. The realm of engineering and technology, characterized by its interdisciplinary nature, demands the synthesis of knowledge from a wide array of domains including humanities, arts, and advanced technologies. However, what distinguishes technologists is their proficiency in design and their ability to adeptly apply this knowledge across diverse disciplines to achieve effective problem-solving.

In response to these needs, aspiring engineers need thorough preparation and a deep understanding of the latest technological trends and industrial requirements. This calls for studying under a modern and adaptable curriculum that mirrors the global environment. As part of this initiative, there is a push to integrate recent advancements and enrich course content with pertinent and up-to-date subjects. Consequently, a revised structure and curriculum will debut from the academic year 2023-24 for First Year Civil Engineering, with intentions to progressively implement these updates across second, third- and fourth-year engineering programs.

Project-based learning has been introduced alongside traditional classroom teaching and laboratory-based learning to enhance the overall learning experience. The objective is to encourage students to learn collaboratively in groups of 3 to 4, focusing on solving meaningful problems. These problems can be theoretical, practical, social, technical, symbolic, cultural, or scientific, arising from students' curiosity across various disciplines and professional contexts. The selected problems should be exemplary and may require an interdisciplinary approach for both analysis and resolution. This approach aims to develop students' capacity for learning through shared cognition.

• Laboratory Course:

This is focused on completing experiments and assignments related to the courses of the Semester.

- Seminar: This aspect will revolve around state-of-the-art topics selected by students and approved by the authority. Students are required to submit a certified seminar report in a standard format, evaluated by their assigned guide and the department/institute head for satisfactory completion of the work.
- Project Work in Final Year: Project work in the seventh Semester is integral to the curriculum. It involves applying knowledge gained throughout the graduation program, ideally addressing societal needs. The project provides an opportunity for students to design and construct complete systems or subsystems, specializing in areas of their interest. Students must prepare a certified final project report in standard format, evaluated by their guide and the department/institute head for satisfactory completion of the work.
- Internship: Internships are crucial for educational and career development, offering practical experience in field of discipline. It plays a significant role as employers seek well-trained employees. The primary objective is to expose technical students to real-world industrial environments, providing insights into the social, economic, and administrative factors influencing organizational operations. Students may choose internships in industries, government agencies, NGOs, MSMEs, rural settings, innovation hubs, intellectual property rights (IPR), or entrepreneurship initiatives. They can opt to focus on innovation, leading to start-up's, or gain experience in industry/NGO/government/MSME settings to prepare for professional roles. The conduction, monitoring, assessment, and evaluation of internships follow guidelines provided by AICTE.

Definition of Credit **

1 Hour Lecture (L) per week	1 credit for 1 Hour
Tutorial (T) per week	1 credit for 1 Hour
Practical(P) per week 2 Hours Practical (Lab)/week	1 credit for 2 Hours

^{**} The head of Tutorial and Practical (as a special case) may be merged for common credit with the permission of authority.

Rule No. 1: Eligibility for Admission

Eligibility Criteria

Students seeking admission to the first year of the Bachelor's degree course in Engineering and Technology must fulfil the eligibility criteria as laid down from time to time by the following authorities:

- Dr. Babasaheb Ambedkar Technological University (DBATU)
- Government of Maharashtra
- All India Council for Technical Education (AICTE)

Rule No. 2: Scheme of Assessment

Eligibility for the Degree of Bachelor of Engineering and Technology

To be eligible for the degree of Bachelor of Engineering and Technology, a candidate must:

1. Appearing for Examinations:

A candidate is required to appear for all prescribed examinations during the course of study.
 This includes theory exams, practical exams, term-work assessments, project evaluations, and any other form of examination as specified in the syllabus.

2. Passing of Examinations:

 A candidate must pass all the prescribed examinations. The passing criteria, including minimum marks required in theory, practical, term-work, and other components, will be as per the rules laid down by the university.

Components of Assessment

The scheme of assessment typically includes the following components:

1. Theory Examinations:

- o Conducted at the end of each Semester.
- o Assess the theoretical understanding of the subjects.

2. Practical Examinations:

- o Conducted to assess the practical skills and application of knowledge.
- o Includes laboratory work, experiments, and practical assignments.

3. Term-Work Assessments:

- o Continuous assessment of assignments, tutorials, and project work throughout the Semester.
- o Includes the evaluation of written assignments, presentations, and project reports.

4. Project Work:

- o Assessment of project-based learning and final year projects.
- Includes continuous assessment by the faculty and final evaluation through project reports, presentations, and viva-voce.

5. Internal Continuous Assessment:

- o Regular assessments conducted throughout the Semester.
- o Includes quizzes, class tests, mid-term exams, and participation in class activities.

Program Objectives

Goal of the Civil engineering with a specialization in Structural Engineering (STE) at Dr. Babasaheb Ambedkar technological University, Lonere (BATU) is to provide students with preparation to become worthy of professional careers in the field and to be motivated for lifelong learning. All prescribed courses have definite objectives and outcomes. Program objectives are expected qualities of engineers as under:

- **a) Preparation:** To prepare students to excel in various educational program or to succeed in industry / technical profession through further education/training;
- **b) Core Competence:** To provide students with a solid foundation in mathematical, scientific fundamentals required to solve E&T related problems;
- c) Breadth: To train students with a breadth of scientific knowledge to comprehend, analyze, design & create novel products and solutions for real life problems;
- **d) Professionalism:** To inculcate in students professional/ethical attitude, effective team work skills, multidisciplinary approach and to relate engineering issues to a broader context;
- **e) Learning Environment:** To provide students with academic environment of excellence, leadership, ethical guidelines and life-long learning needed for a long / productive career.

In addition to above, DBATU graduate is expected to be

- 1. Taking pride in their profession and have commitment to highest standards of ethical practices,
- 2. Able to design structural system that is safe, economical and efficient.
- 3. Capable of using modern tools efficiently in all aspects of professional practices.
- 4. Dealing successfully with real life civil engineering problems and achieve practical solutions based on a sound science and engineering knowledge.
- 5. Shall represent the highest standards of Structural engineering and related technical disciplines.
- 6. Shall be engage in continuous research, development and exchange of knowledge for professional development.
- 7. Be honest in their control and performing their duties and promote effective use of resources through open, honest and impartial services to the public.
- 8. Act in such a manner which will uphold the honour, integrity, or dignity of the engineering profession, and avoid knowingly engaging in business or professional practices of a fraudulent, dishonest or unethical nature.
- 9. Recognize that the lives, safety, health and welfare of the public are dependent upon engineering, decision and practices.
- 10. Continue their professional development throughout their careers and provide opportunities for the professional development.

Table A: Credit Structure for PG program in Engineering

Course Category	Provided
Program Core Course (PCC)	15
Program Elective Course (PEC)	12
Experiential Learning Courses (ELC)	40
Humanities Social Science and Management (HSSM-IKS/VEC/AEC)	7
Open Elective (OE) Other than a particular program	3
Multidisciplinary Minor (MDM)	6
TOTAL	83

Teaching & Evaluation Scheme for M. Tech. in Civil Engineering with Specialization in Structural Engineering

Sr.	Course Code	Course Title		achi chen	_	Evaluation Scheme				
No.			L	T	P	ISE	MSE	ESE	Total	Credit
Semester- I						•		•		
1	MCVSTEPCT 101	Theory of Elasticity and Plasticity	3			20	20	60	100	3
2	MCVSTEPCT 102	Matrix Methods of Structural Analysis	3			20	20	60	100	3
3	MCVSTEPCT 103	Structural Dynamics	3			20	20	60	100	3
4	MCVSTEPET 104	Program Elective-I	3			20	20	60	100	3
5	MCVSTEPET 105	Program Elective-II				20	20	60	100	3
6	MCVSTEELP 106	PG Lab-I			4	25		25	50	2
7	MCVSTEHMT 107	Communication Skills				25		25	50	2
8	MCVSTEAUP 108	YOGA for Stress Management			-	AU				AU
		Total	17	0	04	150	100	350	600	19
		Semester- II				1	I	ı	ı	
1	MCVSTEPCT 201	Theory of Plates and Shells	3			20	20	60	100	3
2	MCVSTEPCT 202	Finite Element Analysis	3			20	20	60	100	3
3	MCVSTEPET 203	Program Elective- III	3			20	20	60	100	3
4	MCVSTEPET 204	Program Elective- IV	3			20	20	60	100	3
5	MCVSTEOET 205	Open Elective-V	3			20	20	60	100	3
6	MCVSTEELP 206	PG Lab-II			4	25		25	50	2
7	MCVSTEELP 207	Mini-Project			8	25		25	50	4
8	MCVSTEHMT 208	Indian Knowledge System	2			20	20	60	100	2
		Total	17	0	12	170	120	410	700	23

Type of course:

Program Core: PC	Program Elective: PE				
Open Elective: OE (Other than particular program)	Ability Enhancement Course: AE				
Modern Indian Language: MIL	Humanities, Management, language and Commerce: HM				
Experiential Learning Courses: EL	Multidisciplinary Minor Courses: MD				
ABBRIVATIONS: ISE-INSEMESTER EVALUATION, MSE-MID SEMESTER EVLUATION,					
ESE -END SEMESTER EVALUATION					

Teaching & Evaluation Scheme for M. Tech. in Civil Engineering with Specialization in Structural Engineering

Sr. No	Course Code	Course Title		Teaching Scheme		Evaluation Scheme				Credit
•	Course Coue			T	P	ISE	MSE	ESE	Total	Cr
		Semester-III	•	•	•				•	
1	MCVSTEMDT 301	MOOC/SWAYAM/ NPTEL	3			20	20	60	100	3
2	MCVSTEMDT 302	PLATFORM COURSES/Self Study. (It is desirable to choose one course from each of PE,OE &AE)				20	20	60	100	3
3	MCVSTEHMT 303					20	20	60	100	3
4	MCVSTEELP 304	Seminar-I			4	25		25	50	2
5	MCVSTEELP 305	Dissertation Stage -I			20	50		50	100	10
		TOTAL	9		24	135	60	255	450	21
	Semester-IV									
1	MCVSTEELP 401	Dissertation Stage-II			40	100		100	200	20
		TOTAL			40	100		100	200	20

Dissertation Stage –I /Internship

Students can take Industry Internship along with Dissertation Stage –I. Students must maintain regular reporting with Dissertation supervisor regarding status of Dissertation

Dissertation Stage I and Synopsis Approval:

It is a course requirement under the guidance of faculty Supervisor. PG student from second year is required to do innovative and research oriented applied work related to various theory and laboratory courses. Dissertation work may cover analytical formulation, experimentation or survey based project or combination of these. Student are encouraged to undertake an interdisciplinary type project.

Students should be encouraged to publish a paper on Stage –I work in Journals/conferences.

Sr.No.	Multidisciplinary Minor Courses
A	MOOC/SWAYAM/ NPTEL -Project Management and Intellectual Property Rights (Self Study) Student may select this course from either MOOC/SWAYAM / NPTEL pool or any other approved reputed source. The submission of course completion certificate is mandatory. MCVSTEMDT 301/302, MCVSTEHMT 303 - Institute has to take care of registration of subjects with detailed syllabus in first two weeks of beginning of the semester with exam department of DABATU.

Teaching & Evaluation Scheme for M. Tech. in Civil Engineering with Specialization in Structural Engineering

Sr.No.	Program Elective-I	Program Elective-II
A	Design of Bridges	Advanced Pre-stressed Concrete
В	Numerical Methods	Design of Masonry Structures
С	Approximate Analysis of Structural Systems	Assessment of Structural Loading

Sr.No.	Program Elective-III	Program Elective-IV	Open Elective
A	Design of Cold Formed Steel Structures	Design of Tall Buildings	Research Methodology
В	Structural Health Monitoring	Earthquake Engineering & Design of Earthquake Resistant Structures	Soil Dynamics & Machine Foundations
С	Retrofitting of Structures	Structural Audits	Solution Procedures in Civil Engineering

Sr.No.	Multidisciplinary Minor	Indian Knowledge System
A	MOOC/SWAYAM/ NPTEL	Concepts and Applications in Engineering
В	Project Management and Intellectual Property Rights (Self Study)	Humanities and Social Sciences

Teaching & Evaluation Scheme for M. Tech. in Civil Engineering with Specialization in Structural Engineering

Sr. No.	Course Code	Course Title	1	Teaching Scheme		Evaluation Scheme				Credit
				T	P	ISE	MSE	ESE	Total	
		Semester- I								
1	MCVSTEPCT 101	Theory of Elasticity and Plasticity	3			20	20	60	100	3
2	MCVSTEPCT 102	Matrix Methods of Structural Analysis	3			20	20	60	100	3
3	MCVSTEPCT 103	Structural Dynamics				20	20	60	100	3
4	MCVSTEPET 104	Program Elective-I	3			20	20	60	100	3
5	MCVSTEPET 105	Program Elective-II	3			20	20	60	100	3
6	MCVSTEELP 106	PG Lab-I			4	25		25	50	2
7	MCVSTEHMT 107	Communication Skills				25	-1-	25	50	2
8	MCVSTEAUP 108	YOGA for Stress Management				AU	-1-			AU
		Total	17	0	04	150	100	350	600	19

Type of course:

Program Core: PC	Program Elective: PE				
Open Elective: OE (Other than particular program)	Ability Enhancement Course: AE				
Modern Indian Language: MIL	Humanities, Management, language and Commerce: HM				
Experiential Learning Courses: EL	Multidisciplinary Minor Courses: MD				
ABBRIVATIONS: ISE-INSEMESTER EVALUATION, MSE-MID SEMESTER EVLUATION, ESE -END SEMESTER EVALUATION					

SUBJEC	CT CODE	773 1	C T 1	•, 1		CREDITS		
MCVSTI	EPCT 101	Theory of Elasticity and Plasticity					Theory of Elasticity and Plasticity 3	
Teaching Work Load/week(Hrs.)				Examination Scheme(Marks)				
Theory	Tutorial	Laboratory	Total	ISE MSE ESE				Total
3	0	0	3	20 20 60				100

Cours	Course Outcomes: Students will be able to				
CO1	Understand concept of stress and strain at a point, Stress equilibrium and Strain compatibility and analyse Stress and Strain at a point with various perspectives, etc. under in three-dimensional state of stress.				
CO2	Establish relation between stress and strain for various materials, Elastic constants, and reduce 3D				
CO3	Formulate and analyse stress concentration problems due to various complex situations.				
CO4	Formulate and analyse members subjected to Torsion using various classical approaches.				
CO5	Able to understand different post yielding behaviour of materials and Plasticity theories.				

Module 1	Analysis of Stresses and Strains	Hrs. 8				
Concept of Stress a	Concept of Stress at a Point, Stress Tensor, State of Stress at a Point in Cartesian Coordinate System, Derivation					
Stress Equilibrium	stress Equilibrium Equations in Cartesian and Polar Coordinate System, Cauchy's Formula, Normal Stress, Shear					
Stress and Resultar	t Stress on any Inclined Plane, Transformation of Stresses, Stress Invariants, State of	Pure Shear,				
Principal Stresses,	Principal Stresses, Maximum Shear Stresses, Octahedral Stresses, Decomposition of State of Stress into Pure Shear					
and Hydrostatic St	and Hydrostatic Stress, Mohr's Circles/ Spheres for Various States of Stress, The State of Strain at a Point, Strain					
Displacement Relat	Displacement Relations, Strain Compatibility Condition, Volumetric Strain, Problems on Navier Lame's Equilibrium					
Equations, Problem	Equations, Problems on Beltrami - Michell Compatibility Equations, Boundary Value Problems in Elasticity.					
Module 2 Stress-Strain Relationship						

Module 2 Stress-Strain Relationship Hrs. 8

Generalized Hooke's Law, Hooke's Law for Isotropic, Orthotropic, Plane Stress, Plane Strain and AxiSymmetric Problems, Relations between Elastic Constants, Problems in 2D and 3D Cartesian Coordinate
System, Airy's Stress Function, Bending of Beams, Straight Beams & Asymmetrical Bending, Euler
Bernoulli Hypothesis, Shear Center or Center of Flexure, Shear Center in Thin Walled Open Sections and

Other Sections

Hrs. 6

Stress Concentration Problems such as Stress Concentration due to Circular Hole in Stressed Plate (Kirsch's Problem), Stresses under Concentrated Load such as Concentrated Load acting on the Vertex of a Wedge (Michell's Problem) and Concentrated Load Acting on the Free Surface of a Plate (Flamant's Problem), Axi-symmetric Problems such as Stresses in Thick Cylinders Subjected to Internal and External Uniformly Distributed Pressures (Lame's Problem).

Module 4	Torsion	Hrs. 6

Stress Concentration Problems

Module 3

Assumptions and Torsion Equation for General Prismatic Solid Bars, Warping of Non-Circular Sections and St. Venant's Theory, Prandtle's Stress Function Approach, Torsion of Circular, Elliptical and Triangular Cross-Section, Torsion of Thin-Walled Structures by Membrane Analogy, Torsion of Rolled Sections and Shear Flow.

Module 5 Plasticity	Hrs.7
---------------------	-------

Basic Equations, Similarities and Differences when Compared with Elasticity, Idealized Material Behaviour, Mechanical Models, Neck Formation, Failure Theories, Modes of Failure, Failure under Static Equilibrium, Buckling, Vibrations, Yielding, Fracture, Ductile and Brittle Failure, Yield Criteria, Rankine's Theory, Saint Venant's Theory, Tresca Criteria, Beltrami's Energy Criteria, Von Mises and Hencky & Huber's Theory, Comparison of Different Theories under Axial Tension and Torsion, Various Empirical Stress-Strain Relationships

Text I	Text Books:				
1	L. S. Shrinath, Advanced Solid Mechanics, Tata-McGraw Hill Publications.				
2	Timoshenko & Goddier, Theory of Elasticity & Plasticity, Mc-Graw Hill Publications.				
3	Martin Sadd, Elasticity Theory, Applications & Numerics, Academic Press.				
4	M A Kazami, Solid Mechanics, Tata -McGraw Hill Publications.				
5	Sadhu Singh, Theory of Elasticity, Khanna Publishers, New Delhi				

Refere	Reference Books:			
1	Irving Shames, Mechanics of Deformable Solids, Prantice Hall.			
2	NK Bairagi, Advanced Solid Mechanics, Khanna Publishers, New Delhi.			
3	Wang, Applied Elasticity, Dover Publications.			
4	N Dahl and T Lardner, S Crandall, Mechanics of Solids, McGraw Hill Publications.			
5	Scholer, Elasticity in Engineering, McGraw Hill Publications.			

SUBJEC	CT CODE	Matrix Methods of Structural Analysis					CREDITS 3	
MCVSTI	EPCT 102							
	Teaching Work Load/week(Hrs.) Examination Scheme(N				heme(Mar	ks)		
Theory Tutorial		Laboratory	Total	ISE	MSE	ESE	3	Total
3	0	0	3	20	20	60		100

Cours	Course Outcomes: Students will be able to			
CO1	Draw deflected shapes of various structures for different loading and boundary conditions.			
CO2	Understand difference in force approach and displacement approach in structural analysis.			
CO3	Analyze various plane structural systems using direct and generalized flexibility approach.			
CO4	Analyze various plane structural systems using direct and generalized stiffness approach.			
CO5	Develop codes for computer based analysis of plane structures			

Module 1	Introduction & Direct Flexibility Matrix Method	Hrs. 8					
Introduction and	Introduction and Review of Various Methods for Finding Slopes and Deflections at a Point in Statically						
Determinate and	Determinate and Indeterminate Structures, Assessment of Deflected Shape of Structures for Different						
Loading & Suppo	rt Conditions. Direct Flexibility Matrix Method, Applications to Continuous Beams,	Pin Jointed					
Frames, Rigid Join	ted Frames						
Module 2	Generalised Flexibility Matrix Method	Hrs. 8					
Generalised Flexil	bility Matrix Method, Applications to Continuous Beams, Pin Jointed Frames, Ri	gid Jointed					
Frames.							
Module 3	Direct Stiffness Matrix Method	Hrs. 6					
Direct Stiffness Ma	Direct Stiffness Matrix Method, Applications to Continuous Beams, Pin Jointed Frames, Rigid Jointed Frames.						
Module 4	Generalised Stiffness Matrix Method	Hrs.10					
Generalised Stiffn	Generalised Stiffness Matrix Method, Applications to Continuous Beams, Pin Jointed Frames, Rigid Jointed						

Module 5 **Nonlinear Analysis** Hrs.6

Material and Geometric Non-Linearity, Stiffness Method with Material Non-Linearity and Geometric Non-Linearity.

Text B	Text Books:					
1	Weaver W, Gere G. M., Matrix Analysis of Framed Structures, Van Nostrand Reinhold, New York.					
2	Hibbler R. C., Structural Analysis,					
3	Reddy C. S., Basic Structural Analysis, Tata Mc Graw Hill Publications.					
4	G. S. Pandit, S. P. Gupta, Structural Analysis – A Matrix Approach, Tata Mc Graw Hill Publications.					
5	Devdas Menon, Structural Analysis, Alpha Science.					

	Refere	Reference Books:					
	1	A. S. Meghare, S. K. Deshmukh, Matrix Methods of Structural Analysis, Charotor Publishing House					
ĺ	2	B. N. Thadani, J. P. Desai, Structural Analysis – A Matrix Approach, Ueinall Publications, Mumbai					

SUBJEC	CT CODE	~		LD	CREDITS			
MCVSTI	EPCT 103	Structural Dynamics						3
Teaching Work Load/week(Hrs.)					Examination Sc	heme(Mar	ks)	
Theory	Tutorial	Laboratory	Total	ISE MSE ESI			Ξ	Total
3	0	0	3	20	20	60		100

Frames.

Cours	e Outcomes: Students will be able to
CO1	Understand basics of response of structures to forced vibrations and free vibrations.
CO2	Analyse response of SDoF systems to general loading and understand various methods of evaluation
CO3	Analyse response of structures to ground excitations, support excitations and torsional excitations.
CO4	Understand and Analyse structures for natural frequency and modal analysis.
CO5	Analyse response of structural system by numerical evaluation using various classical approaches.

Module 1	SDoF Systems	Hrs. 6
Simple Structures	s, SDoF System, Force -Displacement Relation, Damping Force, Equation	of Motion,
External Force, M	ass Spring Damper System, Equation of Motion: Earthquake Excitation, Combi	ning Static
& Dynamic Resp	onses, Methods of Solution of the Differential Equation, Free Vibration: Un-	damped &
Viscously Dampe	d Free Vibration, Energy in Free Vibration, Coulomb Damped Free Vibration, R	esponse to
Harmonic & Perio	odic Excitations, Viscously Damped Systems, Systems with Non Viscous Damp	ing.
Module 2	SDoF System under General Loading	Hrs. 8
Response to Unit	Impulse, Arbitrary Time Varying Force, Response to Step and Ramp Forces, R	esponse to
Pulse Excitations,	Rectangular Pulse, Half Sine Wave Pulse, Triangular Pulse, Response to Ground	nd Motion,
Numerical Evalua	tion of Dynamic Responses, Time Stepping Methods, Interpolation Methods, N	Newmark's
Beta Method.		
Module 3	Generalised SDoF System	Hrs. 6
Generalised SDF S	systems, Rigid Body Assemblages, Systems with Distributed Mass & Elasticity, Lui	mped Mass
System, Natural Vi	bration Frequency by Rayleigh's method, Shape Functions	
Module 4	MDoF Systems	Hrs.10
Simple Systems, 7	Two Storey Shear Buildings, General Approach for Linear Systems, Static Cor	densation,
Symmetric and As	ymmetric systems subjected to Ground Motion, Symmetric Systems subjected to	Torsional
Excitations, Multip	ole Support Excitations, Methods for Solving Equations of Motion.	
Module 5	Dynamic Analysis and Response of Linear Systems	Hrs.6
Systems without	Damping, Natural Vibration Frequencies and Modes, Modal & Spectral	Matrices,
Orthogonality of	Modes, Normalisation of Modes, Modal Expansion of Displacements, Free	Vibration
Response of Dam	ped and Undamped and Classically Damped Systems, Damping in Structures	, Classical
Damping Matrix,	Non Classical Damping Matrix, Two DoF Systems, Modal Analysis, Modal	Response
Contributions.		

Text Books:

1	R. W. Clough & Joseph Penziene, Dynamics of Structures, Mc-Grew Hill Publications.
2	A. K. Chopra, Dynamics of Structures: Theory & Application to Earthquake Engineering, Prentice
	Hall Publications.
3	Mario Paz, Structural Dynamics, CBS Publication.
4	Roy Craig, Structural Dynamics, John-Wiley & Sons.
5	Jagmohan L. Humar, Dynamics of Structures, Swets and Zeitlinger, Netharlands.

Refere	ence Books:
1	Jaikrisna, A. R. Chandrashekharan, Elements of earthquake Engineering, South Asian Publishers.
2	Mukhopadhayay Madhujit, Structural Dynamics: Vibration and systems, Ane Books India Publisher.
3	Patrick Paultre, Dynamics of Structures, Wiley India

SUBJE	CCT CODE		(Progra	m Elective-I)			C	CREDITS
MCVST	EPET 104A		Design	of Bridg	ges			3
	Teaching Wo	ork Load/week(Hr	s.)		Examination Sc	heme(Mar	ks)	
Theory	Tutorial	Laboratory	Total	ISE	MSE	ESE	3	Total
3	0	0	3	20	20	60		100

Cours	e Outcomes: Students will be able to
CO1	Understand the preliminary concepts, development, various types of bridges and it's conceptual
CO2	Study various types of loadings coming on road and railway bridges.
CO3	Study the behaviour of various types of bridges under different loadings.
CO4	Design of slab decks of various types of RC and PSC bridges.
CO5	Perform the design of substructure components like piers, abutments, wing walls and it's foundation

Module 1	Introduction to Bridge Engineering	Hrs. 6
Historical Perspec	ctive, Introduction, Layout and Planning, Investigations for Bridges, Classification	cation and
Components of Br	idges, Choice of Type of Bridges and Choice of Materials. General Arrangement	of Various
Types of Bridges	including Arch Type, Slab Type, Slab and Beam Type, Plate Girder Type,	Open Web
Girder, Cable Stay	ved Type, etc., Conceptual Bridge Design	
Module 2	Loading on Bridges	Hrs. 8
Loading Standards	s for Roads and Railway Bridges as per IRC Standards and IRS Standards, Analys	sis of other
Loads Like Impa	ect Factor, Centrifugal Forces, Wind Load, Earthquake Load, Hydraul	ic Forces,
Longitudinal Force	ees, Earth Pressure, Buoyancy Effects, etc. Analysis by Pieguad's and Courbon	's Theory
Module 3	Structural Behavior of Various Bridges	Hrs. 6

Structural behavior of Box Girder Bridges, Arch Bridges, Suspension Bridges, Skew Bridges and Cable Stayed Bridges under various loads.

Module 4 Design of Bridge Decks

Hrs.10

Load Distribution in Slab and Bridge, Behavior, Analysis and Design RC and Prestressed Deck Slab, Longitudinal and Cross Girders, Design of Long Span Bridge, Slab Culvert and Box Culvert.

Module 5 Design of Sub structure and Foundation

Hrs.10

Design of Bearings, Design of Sub Structure and Foundations, Piers and Abutments of Different Types and Shapes, Shallow and Deep Foundation, Wing Walls.

Text l	Books:
1	Dr.V.K.Raina, Concrete Bridge Practice: Analysis, Design and Economics, Shroff Publishers &
	Distributors Pvt Ltd.,
2	Dr. B. C. Punmia, Ashok Kumar Jain, Arun Kumar Jain, Reinforced Concrete Structures, Vol. II,
	Laxmi Publications.
3	Jagadish & Jayaram, Design of Concrete Bridges, Tata McGraw Hill.
4	Victor, Design of Concrete Bridges, Tata McGraw Hill.
5	N. Krishnaraju, Prestressed Concrete Bridges, CBS Publishers & Distributors Pvt. Ltd.

Refer	ence Books:
1	Ponnuswamy S., Bridge Engineering, Tata McGraw Hill.
2	Dr. V. K. Raina., Concrete Bridge Practice: Construction, Maintenance & Rehabilitation, Shroff Publishers & Distrib. Pvt Ltd.
3	Dr.V.K.Raina, Field Manual for Highway & Bridge Engineers, Shroff Publishers & Distributors Pvt Ltd.
4	Dr.V.K.Raina, Handbook for Concrete Bridges, Shroff Publishers & Distributors Pvt Ltd.
5	Victor D. J., Essentials of Bridge Engineering, Oxford & IDH

SUBJECT CODE		(Program Elective-I)			C	CREDITS		
MCVST	TEPET 104B		Numerio	cal Meth	ods			3
	Teaching Wo	ork Load/week(Hr	s.)		Examination Sc	heme(Mar	ks)	
Theory	Tutorial	Laboratory	Total	ISE	MSE	ESE		Total
3	0	0	3	20	20	60		100

Cours	se Outcomes: Students will be able to
CO1	Formulate mathematical models of various engineering problems.
CO2	Demonstrate understanding of common numerical methods and how they are used to obtain
CO3	Solve non-linear equations, simultaneous linear algebraic equations, Eigen value problems, using
CO4	Perform numerical differentiation and integration and analyze the errors.
CO5	Apply curve fitting techniques to experimental data

Module 1 Introduction I

Introduction and Necessity of Numerical Methods, Number representation and errors, Number in different bases, Non integer & Fraction, mantissa, exponent, normalized scientific notations, Errors in representing numbers, Inverse error analysis, Loss of Significance.

Module 2 Solution of Linear and Non-Linear Algebraic Equations

Hrs. 8

Systems of Linear Algebraic Equations, Introduction, ill Conditioning, Methods of Solution (Gauss Elimination Method, LU Decomposition Method, Doolittle Decomposition Method, Gauss-Jordon Elimination Method, Gauss Seidel Method), Symmetric& Banded Coefficient Matrices, Pivoting, Diagonal Dominance, Gauss Elimination with scaled row Pivoting, Roots of Algebraic & Transcendental Equations, Fixed point iteration method, Iterative Search Method, Bisection Method, Geometrical Approach to Root Finding, Convergence towards Roots of Equation, Secant Method, False Secant/ Regula-Falsi Method, Ridder's Method, Newton Raphson Method, System of Non-Linear equations (Newton Raphson Method).

Module 3 Regression Analysis

Hrs. 6

Interpolation and Curve Fitting, Discrete Data, Lagrange's Interpolating Polynomial, Newton's Polynomial Method, Limitations of Interpolation with Polynomials, Spline Interpolation, Curve Fitting, Least Square Fit, Fitting with straight Line, Polynomial Fit, Weighted Linear Regression, Fitting Exponential Function.

Module 4 Numerical Integration Methods

Hrs.8

Numerical Differentiation and Integration, Taylor's Series, Finite Difference Method, Error in Finite Difference Approximation, Richardson Extrapolation, Derivatives by Interpolation, Cubic Spline Interpolant, Numerical Integration or Quadrature, Newton Cotes Formula, Trapezoidal & Composite Trapezoidal Rule, Simpson Rule, Recursive Trapezoidal Rule, Romberg Integration, Gaussian Integration, Orthogonal Polynomial, Abscissas and Weights for Gaussian Quadrature, Gauss Legendre Quadrature, Gauss Laguerre & Gauss Hermite Method, Gauss-Chebyshev Quadrature, Gauss Quadrature with Logarithmic Singularity

Module 5 Solution of Differential Equations

Hrs.8

Initial Value Problem, Taylor series approach, Euler's Method, Runge-Kutta Method, Second Order Runge-Kutta Method, Forth order Runge-Kutta Method, Stability of Euler's Method, Stiffness, Adaptive Runge-Kutta Method, Bulrisch Stoer Method, Numerical Methods in Structural Dynamics, Implicit and Explicit Method, Central Difference Method, Newmark-Beta Method, Wilson-Theta Method.

Text I	Books:
1	L. Ridgway Scott., Numerical Analysis, Princeton University Press
2	S. D. Conte, Carl de Boor, Elementary Numerical Analysis: An Algorithmic Approach, Mc Graw Hill Publications
3	S. R. Otto, J. P. Deneir, An introduction to Programming and Numerical methods in MATLAB,

	Springer
4	Jaan Kiusalaas, Numerical Methods in Engineering with MATLAB, Cambridge University Press.
5	William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, Numerical Recipes in C, Cambridge University Press.

SUBJECT CODE		(Program Elective-II)					CREDITS	
MCVSTEPET 105A		Adv	anced Pres	stressed C	oncrete			3
	Teaching Wo	ork Load/week(Hr	s.)		Examination Sc	heme(Mai	ks)	
Theory Tutorial		Laboratory	Total	ISE	MSE	ESI	3	Total
3	0	0	3	20	20	60	0 100	

Cours	Course Outcomes: Students will be able to			
CO1	Understand the preliminary concept, terminologies and methodologies related to prestressed concrete.			
CO2	Analyse and design of the anchor blocks.			
CO3	Analyse the PSC member for flexural, shear strength and deflection.			
CO4	Design the simple and indeterminate structures like continuous beams and portal frames.			
CO5	Analyse and design composite section and various slabs			

	Course Contents				
Module 1	Introduction to Prestressed Concrete	Hrs. 6			
Basic Principle of	f Prestressing, Methods and Systems of Prestressing, Material Requirements,	Losses of			
Prestressing, Anal	lysis of Rectangular, Symmetrical and Unsymmetrical, Flanged Beams, Concept	ot of Cable			
Profile, Pressure I	Line, Thrust Lines, etc.				
Module 2	Design of Anchor Blocks	Hrs. 8			
Design of Anchor	Blocks using Magnel's Method, Guyon's Method and IS Code Method				
Module 3	Analysis and Design of PSC Members	Hrs.8			
Analysis of PSC se	ction for Flexural Strength, Shear Strength and Deflection, Design of Prestressed Conc	rete section			
for Flexural Strengt	th by Analytical procedure and Magnel's Graphical method, Shear Strength and Deflect	ion, Design			
of Statically Indeter	rminate Beams and Single Story Portal Frame, Concordant Cable Profile				
Module 4 Composite Section Hrs.8					
Analysis and Des	ign of Composite Construction of Prestressed and in-situ Concrete Structures,	Design of			
One way and Two	way Slab, Grid Slab				
Module 5 Causes and Remedies of Various Defects in PSC Hrs.8					
Causes of variou	s Defects in Prestressed Concrete like Cracking, Buckling, Deflection, De	terioration,			
Corrosion of Prest	cressing Steel, Concrete Crushing at End Anchorages, Grouting of Post Tensione	d Tendons,			
Congested Connec	ctions, Dimensional Tolerances etc. and Remedial Measures				

Guid	Guidelines for Assignments:				
1	The candidate shall perform minimum Six assignments consisting theoretical as well as numerical				
	aspects of the Course.				
2	One assignment based on visit to any of the prestressed concrete plant or ongoing site involving				
	prestressed concrete activities is desirable.				
3	Use of IS 456-2000 and IS 1343 is allowed in the theory examination.				
4	The necessary charts for design of anchor blocks by various methods shall be provided in the question				
	paper.				

Text E	Text Books:				
1	N. Krishnaraju, Prestressed Concrete, Tata Mc Graw-Hill Publishing Company.				
2	T. Y. Lin & Nedbhurns, Design of Prestressed Concrete Structures, John Wiley & Sons				
3	S.Ramamruthm, Pretsressed Concrete, Dhanpat Rai and Sons.				
4	Sinha and Roy, Fundamentals of Prestressed Concrete, S. Chand Ltd.				
5	N. Rajagopalan, Prestressed Concrete, Narosa Publishing House				

Reference Books:					
1	James R. Libby, Modern Prestressed Concrete, CBS Publishers & Distributors Pvt. Ltd.				
2	IS 1343: 2012, Indian Standard Code of Practice for Prestressed Concrete.				
3	IS 784: 2001, Indian Standard Code for Circular Prestressing in prestressed concrete pipes				

SUBJECT CODE		(Program Elective-II)				CREDITS		
MCVSTEPET 105B		Des	Design of Masonry Structures				3	
Teaching Work Load/week(Hrs.)			s.)		Examination Sc	heme(Ma	rks)	
Theory Tutorial Laboratory			Total	ISE	MSE	ESI	\Box	Total
3	0	0	3	20 20 60		60		100

Cours	Course Outcomes: Students will be able to				
CO1	Understand the preliminary information of various masonry structures including materials of				
	construction, basic properties and parameters.				
CO2	Understand the compressive strength of masonry structures under various conditions and situation.				
CO3	Determine strength of masonry structure in flexure, shear, bond and factors affecting.				
CO4	Design the load bearing masonry buildings.				
CO5	Design the earthquake resistant masonry structures.				

Module 1 Introduction Hrs. 6

Masonry units, Materials and Types, History of Masonry Characteristics of Brick, Stone, Clay Block, Concrete Block, Stabilized Mud Block Masonry units – Strength, Modulus of Elasticity and Water Absorption. Masonry materials, Classification and Properties of Mortars, Selection of Mortar.

Module 2 Strength of Masonry in Compression

Hrs. 8

Behaviour of Masonry under Compression, Strength and Elastic Properties, Influence of Masonry unit and Mortar Characteristics, Effect of Masonry unit Height on Compressive Strength, Influence of Masonry Bonding Patterns on Strength, Prediction of Strength of Masonry in Indian Context, Failure Theories of Masonry under Compression. Effects of Slenderness and Eccentricity, Effect of Rate of Absorption, Effect of Curing, Effect of Ageing, Effect of Workmanship on Compressive Strength.

Module 3 Flexural, Shear and Bond Strength

Hrs.8

Flexural Strength and Shear Strength of Masonry, Bond between Masonry unit and Mortar, Tests for determining Flexural, Shear and Bond strengths, Factors affecting Bond Strength, Effect of Bond Strength on Compressive Strength, Orthotropic Strength Properties of Masonry in Flexure, Shear Strength of Masonry.

Module 4 Design of Load Bearing Masonry Buildings

Hrs.8

Permissible Compressive Stress, Stress Reduction and Shape Reduction Factors, Increase in Permissible Stresses for Eccentric Vertical and Lateral Loads, Permissible Tensile and Shear Stresses, Effective Height of Walls and Columns, Opening in Walls, Effective Length, Effective Thickness, Slenderness Ratio, Eccentricity, Load Dispersion, Arching action, Lintels, Wall Carrying Axial Load, Eccentric Load with Different Eccentricity Ratios, Wall with Openings, Free standing Wall, Design of Load Bearing Masonry for Buildings up to 3 to 8 Storey's using BIS Codal Provisions.

Module 5 Earthquake Resistant Masonry Buildings

Hrs.8

Behaviour of masonry during earthquakes, concepts and design procedure for earthquake resistant masonry, BIS Codal provisions. Masonry arches, domes and vaults: Components and classification of masonry arches, domes and vaults, historical buildings, construction procedure

Guidelines for Assignments:

The candidate shall perform minimum Six assignments consisting theoretical as well as numerical aspects of the Course.

Text	Text Books:			
1	1 Hendry A.W., "Structural masonry", Macmillan Education Ltd., 2nd edition			
2	Sinha B.P & Davis S.R., "Design of Masonry structures", E & FN Spon			
3	3 Dayaratnam P, "Brick and Reinforced Brick Structures", Oxford & IBH			

1

4	Curtin, "Design of Reinforced and Prestressed Masonry", Thomas Telford
5	Sven Sahlin, "Structural Masonry", Prentice Hall

Refer	Reference Books:				
1	Jagadish K S, Venkatarama Reddy B V and Nanjunda Rao K S, "Alternative Building Materials and				
	Technologies", New Age International, New Delhi & Bangalore				
2	IS 1905: 1987 Indian Standard Code of Practice for Structural Use of Unreinforced Masonry, Bureau				
	of Indian Standards, New Delhi.				
3	SP20 (S&T): 1991, Handbook on Masonry Design and Construction				

SUBJEC	CT CODE	D.C. I.	1 7 0	1.5			C	CREDITS
MCVSTI	EELP 106	PG La	b-I Struct	ural Dynai	mics Lab			2
	Teaching Work Load/week(Hrs.)				Examination Sc	heme(Mar	ks)	
Theory	Tutorial	Laboratory	Total	ISE	MSE	ESE	,	Total
0	0	4	2	25 25			50	

The stud	The students are expected to perform any five experiments out of list given below and submit report			
EXP.1	Dynamics of a three-storied building frame subjected to harmonic base motion			
EXP.2	Dynamics of a one-storied building frame with planar asymmetry subjected to harmonic base			
EXP.3	Dynamics of a three-storied building frame subjected to periodic (non harmonic) base motion			
EXP.4	Vibration isolation of a secondary system.			
EXP.5	Dynamics of a vibration absorber.			
EXP.6	Dynamics of a four-storied building frame with and without an open ground floor.			
EXP.7	Dynamics of one-span and two span beams.			
EXP.8	Earthquake induced waves in rectangular water tanks.			
EXP.9	Dynamics of free-standing rigid bodies under base motions.			
EXP.10	Seismic wave amplification, liquefaction and soil-structure interactions			

Text E	Text Books:				
1	Hendry A.W., "Structural masonry", Macmillan Education Ltd., 2nd edition				
2	Sinha B.P & Davis S.R., "Design of Masonry structures", E & FN Spon				
3	Dayaratnam P, "Brick and Reinforced Brick Structures", Oxford & IBH				
4	Curtin, "Design of Reinforced and Prestressed Masonry", Thomas Telford				
5	Sven Sahlin, "Structural Masonry", Prentice Hall				

Refe	Reference Books:				
1	Jagadish K S, Venkatarama Reddy B V and Nanjunda Rao K S, "Alternative Building Materials and				
	Technologies", New Age International, New Delhi & Bangalore				
2	IS 1905: 1987 Indian Standard Code of Practice for Structural Use of Unreinforced Masonry, Bureau				
	of Indian Standards, New Delhi.				
3	SP20 (S&T): 1991, Handbook on Masonry Design and Construction				

SUBJEC	BJECT CODE				CREDITS			
MCVSTE	EHMT 107		Communi	ication Ski	ıll			2
	Teaching Work Load/week(Hrs.)				Examination Sc	heme(Mar	ks)	
Theory Tutorial		Laboratory	Total	ISE	MSE	ESE	,	Total
2	0	0	2	25		25		50

Cours	Course Outcomes: Students will be able to			
CO1	Understand the preliminary information of various masonry structures including materials of			
	construction, basic properties and parameters.			
CO2	Understand the compressive strength of masonry structures under various conditions and situation.			
CO3	Determine strength of masonry structure in flexure, shear, bond and factors affecting.			
CO4	Design the load bearing masonry buildings.			
CO5	Design the earthquake resistant masonry structures.			

Module 1	Language for Technical Purpose and Presentation Tools	Hrs.6			
Technical vocab	ulary, Sentence structures, Microsoft office, Graphical presentations, P	reparation,			
Understanding audience, Use of presentation tools, Presentation, nonverbal techniques, handling questions,					
Demo presentation	ons				
Module 2	Formal Written Communication	Hrs. 3			
Drafting Letters, e	e-Mails, Memos, Notices, Circulars, Schedules.				
Module 3	Project Research Proposals and Reports	Hrs.6			
Research Proposal:	Essentials, Abstract, Aims, Background & significance, Design & methods, Writing	ng a sample			
proposal.Project Re	eport: Types of reports, Planning a report, Collection & organization of information,	Structure &			
style, Proofreading	etc. Writing a sample report.				
Module 4 Project Research Proposals and Reports Hrs.6					
Research Proposa	l: Essentials, Abstract, Aims, Background & significance, Design & methods,	Writing a			
sample proposal.	Project Report: Types of reports, Planning a report, Collection & organi	ization of			
information, Structure & style, Proofreading etc. Writing a sample report.					
Module 5 Business Meetings Hrs.6					
Department of Civil Engineering, DBATU, Lonere. 22					
Page		•			

Understanding role of meetings, planning meetings, developing meeting agendas, scheduling meetings, conducting meetings effectively, Taking notes and publishing minutes and concluding meetings, action plans, Demo meetings.

Text B	Text Books:				
1	S. Hariharan, et.al. Soft Skills; MJP Publishers, 2010.				
2	John Seely, Oxford Guide to Effective Writing and Speaking; Oxford University Press, 2009.				
3	Thomas N. Huckin and Leslie A. Olsen, Technical Writing and Professional Communication				
4	for Nonnative Speakers of English; Tata McGraw Hills, International Edition, 1991.				
5	Jeff Butterfield,Soft Skills for Everyone,cengage Learning India Private Limited,2010				

Refere	Reference Books:				
1	L. Ann Masters & Harold R. Wallace, Personal Development for Life & Work, 10e, Cengage				
2	Learning India Private Limited,2011.				

SUBJECT CODE		VOC	GA for St	recc Man	agement		CREDITS
MCVS	TEAUP109	100		icss iviaii	agement		AUDIT
Teaching Work Load/week(Hrs.)			s.)		Examination Sc	heme(Marks)	
Theory	Tutorial	Laboratory	Total	ISE MSE ESE To			Total
0	0	2	2	AU	AU	AU	AU

Cours	se Objectives
CO1	Understand the physiological and psychological aspects of stress and its impact on overall well-
	being.
CO2	Learn and practice specific yoga postures, breathing exercises, and relaxation techniques to alleviate
	stress.
CO3	Explore the connection between mindfulness, meditation, and stress reduction, fostering mental
	clarity.
CO4	Discover holistic practices that promote better sleep, nutrition, and overall lifestyle habits for stress
	management.
CO5	Develop practical skills to manage stress in daily life, enhancing resilience and promoting emotional
	balance.

Cours	se Outcomes: Students will be able to
CO1	Recognize the signs and sources of stress, understanding its effects on mental and physical well-being.
CO2	Master a variety of yoga techniques, including postures, breathing, and meditation, to effectively manage stress.
СОЗ	Acquire relaxation strategies that promote calmness, reduce anxiety, and enhance overall mental clarity.
CO4	Incorporate healthy habits inspired by yoga principles to foster better sleep, nutrition, and self-care routines.
CO5	Develop practical skills to navigate and cope with stress, enhancing emotional balance and promoting a more harmonious life.

Module 1	Introduction to Yoga for Stress Management	Hrs. 6					
Stress according	Stress according to Western perspective Stress Eastern Perspective Developmental process: Western and						
Eastern Perspectiv	Eastern Perspective Stress Hazards and Yoga						
Module 2	Meeting the challenges of Stress	Hrs. 6					
Introduction to St	ress Physiology Stress, Appetite and Dietary management- Modern and Yogic	perspective					
Sleep and Stress:	understanding the relationship for effective management of stress						
Module 3	Stress Assessment methods	Hrs. 6					
A valuable tool t	oward stress management Role of Yoga in prevention and management of str	ess related					
disorders – a sumr	nary of research evidence Concept of stress and its management - perspectives fro	m Patanjali					
Yoga Sutra - Part	1/Part 2/ Part 3						
Module 4	Stress Management	Hrs.6					
Concept of stress a	and its management - perspectives from Bhagavad Gita - Part 1 / Part 2 / Part 3						
Module 5	Yoga practices for Stress Management	Hrs. 8					
Bio-Psycho-Socio	o-Spiritual model of stress management Yoga practices for Stress Management	Breathing					
practices , Asana practices- Tadasana, Ardhakati Chakrasana, Ardha Chakrasana, Trikonasana, Vrikshasana,							
Vakarasana, Jan	Vakarasana, Janu Sirshasana, Ushtrasana, Sashankasana, Ardhamatseyndrasana, Paschimottanasana,						
Poorvottanasana, Gomukhasana, Makarasana, Bhujangasana, Salambha Shalabahasana, Dhanurasana,							
Setubandhasana, S	Setubandhasana, Sarvangasana, Mastyasana, Deep Relaxation Technique (DRT),etc.						

Text I	Books:
1	H R Nagendra and R Nagarathna. Yoga for Promotion of Positive Health. Swami Vivekananda Yoga
	Prakashana. 2011.
2	Contrada, R., & Baum, A. (Eds.). The handbook of stress science: Biology, psychology, and health.
	Springer Publishing Company. 2010
3	Al'Absi, M. (Ed.). Stress and addiction: Biological and psychological mechanisms. Elsevier. 2011.
4	Van den Bergh, O. Principles, and practice of stress management. Guilford Publications. 2021.
5	Swami Muktibodhananda, Hatha Yoga Pradipika, Bihar Scool of Yoga, 1998

Refe	Reference Books:						
1	Swami Satyananda Saraswati, Four Chapters on Freedom, Bihar Scool of Yoga, 1975						
2	Swami Tapasyananda, Srimad Bhagavat Gita, Sri Ramakrishna Math, 2012						
3	NPTEL Course-Yoga for Stress Management-Dr H R Nagendra, Dr Mithila M V, Dr Rajesh Nair,Swami Vivekananda Yoga Anusandhana Samsthana https://onlinecourses.swayam2. ac.in/aic23_ge10/preview#:~:te xt=In%20this%20course%20we						
	%20intend,meeting%20the%20 challenges%20of%20stress						

Teaching & Evaluation Scheme for M. Tech. in Civil Engineering with Specialization in Structural Engineering

Sr. No.	Course Code	Course Title		Teaching Scheme		Evaluation Scheme				Credit
				T	P	ISE	MSE	ESE	Total	
		Semester- II								
1	MCVSTEPCT 201	Theory of Plates and Shells	3			20	20	60	100	3
2	MCVSTEPCT 202	Finite Element Analysis	3			20	20	60	100	3
3	MCVSTEPET 203	Program Elective- III	3			20	20	60	100	3
4	MCVSTEPET 204	Program Elective- IV	3			20	20	60	100	3
5	MCVSTEOET 205	Open Elective-V	3			20	20	60	100	3
6	MCVSTEELP 206	PG Lab-II			4	25		25	50	2
7	MCVSTEELP 207	Mini-Project			8	25		25	50	4
8	MCVSTEHMT 208	Indian Knowledge System	2			20	20	60	100	2
		Total	17	0	12	170	120	410	700	23

Type of course:

Program Core: PC	Program Elective: PE			
Open Elective: OE (Other than particular program)	Ability Enhancement Course: AE			
Modern Indian Language: MIL	Humanities, Management, language and Commerce: HM			
Experiential Learning Courses: EL	Multidisciplinary Minor Courses: MD			
ABBRIVATIONS: ISE-INSEMESTER EVALUATION	ON, MSE-MID SEMESTER EVLUATION,			
ESE -END SEMESTER EVALUA	ATION			

SUBJEC	CT CODE			1 0 01	11		C	CREDITS
MCVSTI	EPCT 201	\mathbf{T}	heory of P	lates & Sh	nells			3
Teaching Work Load/week(Hrs.)					Examination Sc	heme(Ma	rks)	
Theory	Tutorial	Laboratory	Laboratory Total ISE MSE ESE			Ξ	Total	
3	0	0	3	20 20 60			100	

Cours	Course Outcomes: Students will be able to					
CO1	Understand and derive governing differential equation for deflected shape of rectangular plates.					
CO2	Solve governing differential equation of deflected shape of rectangular plate for various loading and					
CO3	Understand and derive governing differential equation for deflected shape of circular plates.					
CO4	Solve governing differential equation of deflected shape of circular plate for various loading and					
CO5	Understand membrane theory for internal forces in different shells.					

Module 1	Introduction to Plate Theory	Hrs. 8					
Thin and Thick Plates, Small and Large Deflection Theory of Thin Plate, Assumptions in Analysis of Thin							
Plates, Slope Cur	vature Relations, Moment - Curvature Relations, Stress Resultants, Governing I	Differential					
Equations for Ber	nding of Plates, Various Boundary Conditions.						
Module 2	Navier's and Levy's Solution	Hrs. 6					
Rectangular Plate	es Subjected to Uniformly Distributed Load, Sinusoidal Load for Different	Boundary					
Conditions.							
Module 3	Circular Plates	Hrs.8					
Analysis of Circul	ar Plates under Axis-Symmetric Loading, Moment Curvature Relations, Governing	Differential					
Equation in Polar C	Co-Ordinates, Simply Supported and Fixed Edges, Distributed Load, Ring Load, a Plat	e with Hole					
at Center.							
Module 4	Module 4 Introduction to Shell Structures Hrs.8						
Classification o	f Shells on basis of Geometry, Thin Shell Theory, Equation of Shell	Surfaces,					
Stress Resultant	s, Stress- Displacement Relations, Compatibility and Equilibrium Equations						
Module 5	Membrane Analysis	Hrs.8					
Equation of Equilibrium for Synclastic Shells, Solution for Shells Subjected to Self Weight and Live Load,							
Cylindrical Shells - Equation of Equilibrium, Open Shells With Parabolic, Circular, Elliptical Directrix,							
Simple Problems, Shells With Closed Directrix-Circular, Elliptical-Simple Problems, Problems on Pipes							
Carrying Fluid/Li	Carrying Fluid/Liquid Under Pressure, Just Filled & Partly Filled						

Guidelines for Assignments:

1 The candidate shall perform minimum six assignments consisting of theoretical as well as numerical aspects of the course.

Text E	Text Books:				
1	S. Timoshenko and W. Krieger, Theory of Plates and Shells, Mc Grew Hill.				
2	Ansel C. Ugural, Stresses in Plates and Shells, Mc Graw Hill.				
3	G. S Ramaswamy, Design and Construction of Concrete Shell Roofs, CBS Publications.				
4	Chandrashekhara K., Analysis of Concrete Shells, New Age International Edition.				
5	Chandrashekhara K., Analysis of Plates, New Age International Edition.				

Reference Books:

1 Reddy, J. N.; Theory and Analysis of Elastic Plates and Shells, Taylor & Francis

SUBJEC	CT CODE	Einite Element Method				CREDITS			
MCVSTI	MCVSTEPCT 202 Finite Element Method						3		
	Teaching Work Load/week(Hrs.)				Examination Scheme(Marks)				
Theory	Tutorial	Laboratory	Total	ISE MSE ESE Tot				Total	
3	0	0	3	20 20 60 10				100	

Cours	se Outcomes: Students will be able to
CO1	Understand the different energy methods in structural analysis and basic concepts of finite element method.
CO2	Analyse 1-D problems related to structural analysis like Bars, Trusses, Beams and Frames using finite element approach.
CO3	Find solution to problems using direct approach methods like Rayleigh – Ritz or Galerkin's Method.
CO4	Solve 2-D problems using knowledge of theory of elasticity.
CO5	Students will be able to implement the knowledge of numerical methods in FEM to find the solution to the various problems in statics and dynamics, Analyse 1D, 2D, and 3D structures using different

Module 1	Introduction to FEM & Approximate Methods	Hrs. 8	
Introduction, Ove	rview of Various Methods to Solve Integral & Differential Equations (Point C	Collocation	
Method, Method	of Least Square, Weighted Residual Method, Galerkin's Method), Variationa	l Calculus	
(Hamilton's Variational Principle, Minimum Potential Energy Principle, Euler Lagrange Equation), Partial			
FEM (Kentorvich Method/ Finite Strip Method/ Semi-Analytical Method), Local & Global Finite Element			
Methods (Rayleigh-Ritz Method), Stepwise Procedure in FEM			
Module 2	One Dimensional FE Analysis	Hrs. 10	

Application of FEM to Solve various 1-D problems (Shape Functions for 1-D Elements, Properties of Shape Functions, Lagrange Interpolating Polynomials), C0 Continuity, 1-D FE Analysis (Discretization, Selection of Shape Function, Defining Gradients of Primary Unknowns & Constitutive Equations, Derivation of Element Equations, Assembly & Application of Boundary Conditions, Computation of Primary and Secondary Unknowns), Direct Approach for Assembly, Boundary Conditions (Geometric, Natural), Concept of Sub-Structuring (Static Condensation), Stiffness Matrix for Basic Bar & Beam Element, Representation of Distributed Loading, The Assembly Process within the PMPE Approach, Element Stresses), FE Analysis of 1-D Non-Prismatic Members, Solution of Differential Equation using FEM, Solution of BIVP using Galerkin's MWR (1-D Transient Analysis).

Module 3 FE Analysis by Direct Approach

Hrs.6

C1 Continuity, Formulation of 1-D Beam Element, Classical Beam Theory, Element Equation Formulation (Galerkin's Approach, Rayleigh-Ritz Approach), Derivation of Scalar Functional from Differential Equation and Vice Versa, Application to Fixed and Continuous Beams.

Module 4 Two Dimensional FE Analysis

Hrs.10

Conditions of Symmetry & Anti Symmetry (Applications), 2-D FE Analysis, Review of Theory of Elasticity, CST Element (3- Node Triangular Element), Pascal's Triangle and Pyramid, Area Co-ordinate, Stepwise Formulation, Equivalent Load Vector, Plane Stress Problems using CST Elements, 2-D Stress Analysis using 4-noded Rectangular Element, Stepwise Formulation, Effect of Aspect Ratio, Explicit & Implicit Isoparametric Formulation, Iso-parametric Elements for Plane Problems (Quadrilateral Element, Bilinear Element, Para-linear Element, Bi-Quadrilateral Element, Serendipity Elements, Lagrange Element), Numerical Integration, (1-D Domain, 2-D Domain, n-point Gauss Rule), Formulation of Transition Element

Module 5 Three Dimensional FE Analysis & Computer Implementation of FEM Hrs.12

3-D Stress Analysis using FEM, Iso-parametric Formulation, 3-D Brick Element, Application to 3-D Analysis, FEA of Axi- symmetric Solids Subjected to Axi-symmetric and Asymmetric Loads (Application of Partial FEM). Computer Implementation of FEM, Application of FEM to Time Dependent Problems, Partial FEM, h-version of FEM, p-version of FEM, Adaptive Meshing, Exposure to Hybrid FEM (Mixed/ Hybrid Formulation, Unidirectional Composites), Introduction to ANSYS, Static & Dynamic Analysis of 1-D, 2-D and 3-D structures using ANSYS.

Guidelines for Assignments:

The candidate shall perform minimum six assignments consisting theoretical as well as numerical aspects of the course.

Text Books:

1 M. Mukhopdhyay, Concept and Application of Finite Element Analysis, Oxford and IBH Publishing

1

	Co. Pvt. Ltd.
2	O.C.Zienkiewicz & R.L.Taylor, The Finite Element Method Vol .I & II, Tata McGraw Hill
3	J.N.Reddy, An introduction to the Finite Element Method, Tata McGraw Hill Pub.
4	R. D. Cook, Concept and Application of Finite Element Analysis, John Wiley & sons
5	Hutton D.V., Fundamentals of Finite Element Analysis, Tata McGraw Hill Pub.

Refer	Reference Books:		
1	C. S. Desai & J. F. Abel, Introduction to the Finite Element Method, CBS Pub.		
2	C. S .Krishnamoorthy, Programming in the Finite Element Method, Tata McGraw Hill		
3	T.R.Chandrupatla and Belegundu, Introduction to the Finite Element in Engineering Prentice Hall of India, pvt.ltd		
4	Bathe K.J., Finite Element Procedures, PHI learning pvt.ltd		
5	Y. M. Desai, T.I Eldho, Finite Element Method with application in Engineering, Pearson, Delhi		

SUBJECT CODE		(Program Elective-III)					CREDITS	
MCVSTEPET 203A		Design	of Cold Fo	ormed Stee	el Structur	es		3
	Teaching Wo	ork Load/week(Hr	s.)		Examination Sc	heme(Mai	ks)	
Theory	Tutorial	Laboratory	Total	ISE	MSE	MSE ESE Total		Total
3	0	0	3	20	20	60		100

Cours	Course Outcomes: Students will be able to		
CO1	Understand the types of cross sections, mechanical and thermal properties and applications of cold formed steel structures.		
CO2	Understand the design criteria and strength of thin elements and analyse various cross section for strength in tension, compression, flexure, etc.		
CO3	Design the CFS flexural members.		
CO4	Design the CFS compression members.		
CO5	Design the CFS members subjected to axial load and bending. Study and design various types of connections in cold formed steel structures.		

Module 1	Introduction	Hrs. 8			
General, Types of Cold-Formed Steel Sections and Their Applications, Standardized Metal Buildings and					
Industrialized Ho	Industrialized Housing, Methods of Forming, Research and Design Specifications, General Design				
Considerations of	Considerations of Cold-Formed Steel Construction, Economic Design and Optimum Properties, Yield Stress,				
Tensile Strength,	Tensile Strength, and Stress-Strain Curve, Modulus of Elasticity, Tangent Modulus, and Shear Modulus,				
Ductility, Weldab	ility, Fatigue Strength and Toughness, Influence of Cold Work on Mechanical	Properties			
of Steel, Utilization	on of Cold Work of Forming, Effect of Temperature on Mechanical Propertie	s of Steel,			
Testing of Full Se	ctions and Flat Elements, Residual Stresses Due to Cold Forming, Effect of Stra	in Rate on			

Mechanical Properties.

Module 2 Strength of Thin Elements & Design Criteria

Hrs. 8

Definitions of Terms, Design Basis, Serviceability, Structural Behaviour of Compression Elements and Design Criteria, Perforated Elements and Members, Plate Buckling of Structural Shapes, Design Examples.

Module 3 Design of Axially Loaded Members

Hrs. 10

Design of axially loaded tension members, Flexural Column Buckling, Torsional Buckling and Flexural–Torsional Buckling, Effect of Local Buckling on Column Strength, Distortional Buckling Strength of Compression Members, Effect of Cold Work on Column Buckling, North American Design Formulas for Concentrically Loaded Compression Members, Effective Length Factor *K*, Built-Up Compression Members, Bracing of Axially Loaded Compression Members, Design Examples.

Module 4 Design of Flexural Members

Hrs.6

Bending Strength and Deflection, Design of Beam Webs, Bracing Requirements of Beams, Torsional analysis of Beams and Combined Bending and Torsional Loading, Design Examples.

Module 5 Design of Members under Combined Axial Load & Bending

Hrs.10

Combined Tensile axial load and Bending, Combined Compressive axial load and Bending (Beam-Columns), North American Design Criteria, Design Examples, Second-Order Analysis.

Design of Connections: Types of Connectors, Welded Connections, Bolted Connections, Types of Connectors, Welded Connections, Bolted Connections, Screw Connections, Other Fasteners, Rupture Failure of Connections, I or Box-Shaped Compression Members Made by Connecting Two C-Sections, I-Beams Made by Connecting Two C-Sections, Spacing of Connections in Compression Elements.

Guidelines for Assignments:

The candidate shall perform minimum Six assignments consisting theoretical as well as numerical aspects of the Course.

Reference Books:				
1	W.W. Yu, "Cold-Formed Steel Design", John Wiley & Sons.			
2	IS 801: 1975, Code of Practice for Use of Cold Formed Light Gauge Steel Structural Members in General Building Construction.			
3	BS 5950-5:1998, Structural Use of Steelwork in Building: Code of Practice for Design of Cold			
	Formed Thin Gauge Sections.			

SUBJECT CODE		(Program Elective-III)					C	CREDITS
MCVSTEPET 203B		Structural Health Monitoring				3		
	Teaching Work Load/week(Hrs.)				Examination Sc	heme(Mai	ks)	
Theory	Tutorial	Laboratory	Total	ISE MSE ESE			3	Total
3	0	0	3	20	20	20 60 100		100

Cours	Course Outcomes: Students will be able to		
CO1	Understand concepts in structural health monitoring and acquire knowledge of smart materials.		
CO2	Understand vibration control methods in structural health monitoring.		
CO3	Understand electrical impedance methods in structural health monitoring.		
CO4	Understand wave propagation methods in structural health monitoring.		
CO5	Understand advanced signal processing techniques in structural health monitoring.		

Module 1	Introduction to SHM & Smart Materials	Hrs. 6			
Motivation and objectives of structural health monitoring, Working principles of smart materials used for					
sensors and actuators, Structural Health Monitoring verses Non Destructive Testing, Piezoelectric materials					
(Constitutive relation, unimorph, bi-morph, Electromechanical coefficient, resonance/anti-resonance),					
Electrostrictive ma	aterials (Constitutive relation, sensor, actuator, figures of merit), Magnetostrictiv	e materials			
(Constitutive relat	tion, sensor, actuator, figures of merit), Optical Fiber (Fiber Bragg grating, stra	in sensing,			
ultrasonic sensing	·).				
Module 2	Vibration Control & SHM	Hrs. 6			
Damage Diagnost	ic methods based on vibration response, Method based on modal frequency/shape	e/damping,			
Curvature and flo	exibility method, Modal strain energy method, Sensitivity method, Baseline-free	method.			
	B Electrical Impedance Methods in SHM Hrs. 6				
Module 3	Electrical Impedance Methods in SHM	Hrs. 6			
	Electrical Impedance Methods in SHM c methods based on electrical impedance method, Beam model, Plate Model	Hrs. 6			
	-	Hrs. 6			
Damage Diagnostic Module 4	c methods based on electrical impedance method, Beam model, Plate Model	Hrs.6			
Damage Diagnostic Module 4 Damage Diagnost	c methods based on electrical impedance method, Beam model, Plate Model Wave Propagation Methods in SHM	Hrs.6			
Damage Diagnostic Module 4 Damage Diagnost	c methods based on electrical impedance method, Beam model, Plate Model Wave Propagation Methods in SHM ic methods based on wave propagation methods; Bulk waves/Lamb waves, Ref	Hrs.6			
Damage Diagnostic Module 4 Damage Diagnost transmission, Wave	c methods based on electrical impedance method, Beam model, Plate Model Wave Propagation Methods in SHM ic methods based on wave propagation methods; Bulk waves/Lamb waves, Ref	Hrs.6			
Damage Diagnostic Module 4 Damage Diagnost transmission, Wavinaging. Module 5	c methods based on electrical impedance method, Beam model, Plate Model Wave Propagation Methods in SHM ic methods based on wave propagation methods; Bulk waves/Lamb waves, Reflect tuning/mode selectivity, Migration imaging, Phased array imaging, Focusing a	Hrs.6 lection and rray/SAFT			
Damage Diagnostic Module 4 Damage Diagnost transmission, Wavinaging. Module 5 Wavelet, Neural n	c methods based on electrical impedance method, Beam model, Plate Model Wave Propagation Methods in SHM ic methods based on wave propagation methods; Bulk waves/Lamb waves, Reflect tuning/mode selectivity, Migration imaging, Phased array imaging, Focusing a Advanced signal processing methods in SHM & Applications of SHM	Hrs.6 lection and rray/SAFT Hrs.6			

Guidel	Guidelines for Assignments:		
1	The candidate shall perform minimum six assignments consisting theoretical as well as numerical		
	aspects of the course.		

Text I	Text Books:			
1	V. Giurgiutiu, Structural Health Monitoring with Piezoelectric Wafer Active Sensors, Academic			
	Press.			
2	B. Culshaw, Smart Structures & Materials, Artech House, Boston.			
3	A. V. Srinivasan, D. M. Macfarland, Smart Structures: Analysis & Design, University Press,			
	Cambridge, UK.			
4	Fu Ko Chang, Structural Health Monitoring: Current Status and Perspectives,			
5	Philip, W., Industrial sensors and applications for condition monitoring, MEP.			

Refere	Reference Books:					
1	Armer, G.S.T (Editor), Monitoring and assessment of structures, Spon, London.					
2	Wu, Z.S. (Editor), Structural health monitoring and intelligent infrastructure, Volumes 1 and 2, Balkema.					
3	Harris, C.M., Shock vibration handbook, McGraw-Hill.					
4	Rao, J.S., Vibratory condition monitoring of machines, Narosa Publishing House, India.					

SUBJE	CT CODE		(Program	Elective-III)			C	REDITS
MCVSTI	EPET 203C	I	Retrofitting	g of Struct	ures			3
	Teaching Work Load/week(Hrs.)				Examination Scheme(Marks)			
Theory	Tutorial	Laboratory	Total	ISE MSE ESE			Ε	Total
3	0	0	3	20 20 60			100	

Cours	Course Outcomes: Students will be able to				
CO1	Understand factors of Serviceability and Durability of Structures.				
CO2	Determine crack width, effect of crack on materials, effect of moisture on structures.				
CO3	Understand methods for protection of steel structures and masonry structures.				
CO4	Understand various materials and methodologies used for repairing of structures.				
CO5	Understand and implement techniques used for repairing and maintenance of structure				

Module 1	Serviceability and Durability					
Quality Assurance	Quality Assurance for Concrete Construction, Permeability, Thermal Properties and Cracking, Distress					
Monitoring, Cause	Monitoring, Causes for Distress, Effects of Climate, Temperature, Chemicals, Wear and Erosion, Design and					
Construction Erro	Construction Errors, Corrosion Mechanism, Effects of Cover Thickness and Cracking,					
Non Destructive	Testing: Ultrasonic and Sonic Test, Rebound Hammer Test, Strength Eva	aluation of				
Existing Structure	es.					

Module 2 Cracks in Structures Hrs. 6

Causes, Thermal and Shrinkage cracks, Cracks due to Vegetation and Trees, Foundation Movements, Types and their Fatality, Diagnosis Techniques for Repair.

Moisture Penetration

Sources of Dampness, Moisture Movement from Ground, Reasons for Ineffective Damping, Leakage in Concrete Slabs, Pitched Roofs, Dampness in Solid Walls, Condensation, Remedial treatments, Chemical Coatings.

Module 3 Steel Structures and Masonry

Hrs. 10

Types and Causes of Deterioration, Preventive Measures, Repair Procedure, Brittle Failure, Defects in Connections, Welded Joints: Test for Defects; Mechanism of Corrosion, Methods of Corrosion Protection, Corrosion Inhibitors, Corrosion Resistant Steels, Coatings, Cathodic Protection. Design and Fabrication Errors, Distress during Erection.

Strengthening of Existing Structures

General Principle, Relieving Loads, Stress Reduction, Strengthening of Super Structures (Beam, Column, Slab including Joints) for Tension, Compression, Flexural, and Shear respectively, Jacketing (RCC, Plate, Fiber, Wrap), Bonded Overlays, Reinforcement Addition, Strengthening the Substructures, Increasing the Load Capacity of Footing, Strengthening of Masonry Structure.

Module 4 Materials for Repairs

Hrs.6

Essential Parameters for Repair Material, Premixed Cement Concrete and Mortar, Sulphur Infiltrated Concrete, Fiber Reinforced Concrete, Special Elements for Accelerated Strength Gain, Expansive Cement, Polyester Resin.

Polymer Concrete: Physical and Mechanical Properties, General Guidelines and Precautions for Use, Field Application

Polymer Modified Concrete: Physical and Mechanical Properties, General Guidelines and Precautions for Use, Field Application, Epoxy Concrete and Mortar: Epoxies, Physical and Mechanical Properties, General Guidelines and Precautions for Use, Field Application.

Surface Coatings: Essential Parameters, Types, Characteristics.

Module 5 Maintenance and repair strategies

Hrs.6

Definitions: Maintenance, Repair and Rehabilitation, Facets of Maintenance, Importance of Maintenance, Preventive Measures on Various Aspects Inspection, Assessment Procedure for Evaluating a Damaged Structure, Causes of Deterioration, Testing Techniques.

Techniques for Repairs

Repairs using Mortars and Dry Packs, Concrete Replacement, Surface Impregnation, Rust Eliminators and Polymers Coating for Rebar During Repair Foamed Concrete, Vacuum Concrete, Gunite and Shotcrete, Injection: Epoxy, Resin, Polymer Modified Cement Slurry; Shoring and Underpinning. Propping and

Supporting: False Work, Requirement of Good False Work, Design Brief for False Work, Execution Procedure

Guide	Guidelines for Assignments:				
1	The candidate shall perform minimum six assignments consisting theoretical as well as numerical				
	aspects of the course.				

Text	Books:
1	Johnson. S.M., "Deterioration, maintenance and repair of structures", McGraw-Hill book company, New York, 1965.
2	R. T. Allen and S. C. Edwards, "Repair of concrete structures", Blakie and Sons, UK, 1987.
3	Denison Campbell, Allen and Harold Roper, "Concrete structures", Materials, Maintenance and Repair, Longman Scientific and technical UK, 1991.
4	SP25-84, "Hand book on causes and prevention of cracks on buildings", Indian standards.
5	M. S. Shetty, "Concrete Technology- Theory and Practice", S. Chand and Company, New Delhi, 1992

Refer	ence Books:
1	Santhakumar, A.R., " Training Course notes on Damage Assessment and repair in Low Cost
	Housing "," RHDC-NBO " Anna University, July, 1992.
2	Raikar, R.N., "Learning from failures – Deficiencies in Design ", Construction and Service – R &
	D Centre (SDCPL), Raikar Bhavan, Bombay, 1987

SUBJE	ECT CODE	(Program Elective-IV)				CREDITS		
MCVST	TEPET 204A]	Design of		<i>*</i>			3
Teaching Work Load/week(Hrs.)			s.)		Examination Sc	heme(Mai	rks)	
Theory	Tutorial	Tutorial Laboratory Total ISE MSE ESE				Ξ	Total	
3	0	0	3	20 20 60				100

Cours	Course Outcomes: Students will be able to				
CO1	Identify and calculate magnitude of various loads acting on tall buildings.				
CO2	Understand various forms of structures, moment and force resisting systems in a structure.				
CO3	Identify various factors causing movements /twists in the building and their analysis and design.				
CO4	Understand various types of chimneys, their components, Analyse and design of chimneys.				
CO5	Understand various types of Cooling Towers, their components & feasibility, analyse and design a Cooling Tower				

Module 1 Design Loads Hrs. 6

Gravity Loads, Dead Load and Live Load Reduction, Construction Loads, Wind Load, Equivalent Lateral Force, Combination of Loadings, Design Philosophy: Working Stress Design and Limit State Design

Module 2 Structural Systems and its Behaviour

Hrs. 6

Height and Structural Forms, Rigid Frames, Braced Frames, In-Filled Frames, Shear Walls, Coupled Shear Walls, Tubular Structures, and Hybrid Mega Systems

Module 3 Tall Buildings

Hrs. 6

Approximate Analysis, Detail Analysis and Reduction Techniques, Analysis of Member Forces, Drift, and Twist, Buckling Analysis, P-Delta Analysis, Translational and Torsional Instability, Design for Differential Movements, Creep and Shrinkage, Structural Control and Energy Dissipation Devices.

Module 4 Chimneys

Hrs.6

Design Factors, Thermal Stresses, Components, Platform and Safety Ladders, Steel Stacks, Refractory Linings, Caps and Foundations.

Module 5 Cooling & Transmission Towers

Hrs.6

Types, Components, Analysis and Design. Types of Loads, Tower Configuration, Analysis and Design

Guidelines for Assignments:

1

The candidate shall perform minimum six assignments consisting theoretical as well as numerical aspects of the course.

Text 1	Text Books:					
1	B. S. Taranath, Structural Analysis and Design of Tall Building, CRC press, 2011.					
2	B. S. Smith and A. Coull, Tall Building Structures: Analysis and Design, Wiley, 1991.					
3	S. N. Manohar, Tall Chimneys: Design and Construction, Tata Mcgraw-Hill, 1985.					
4	A. R. Shanthakumar and S. S. Murthy, Transmission Line Structures, Tata Mcgraw-Hill, 1990.					
5	IS: 6533 (Part 2): 1989, - Code of Practice for Design and Construction of Steel Chimneys IS 4998 (Part 1): 1992, -Criteria for Design of Reinforced Concrete Chimneys.					

SUBJE	ECT CODE	(Program Elective-IV)					C	CREDITS
MCVSTEPET 204B		-	uake Engi thquake R	_	Design o	f		3
Teaching Work Load/wee			s.)		Examination Sc	heme(Mar	ks)	
Theory	Tutorial	Laboratory	Total	Total ISE MSE ESE		,	Total	
3	0	0	3	20	20	60		100

Cours	se Outcomes: Students will be able to
CO1	Understand Engineering Seismology and Seismic zones in India.
CO2	Understand earthquake response of SDoF Linear systems and instrumentation in measurement of earthquakes.
CO3	Understand factors resisting earthquake forces, and earthquake risk analysis.
CO4	Perform Seismic Analysis of buildings as per IS 1893.
CO5	Understand, analyse and Design structural elements and its ductile detailing using IS 13920.

Module 1	Introduction to Seismology	Hrs. 6
Elements of Seismology, Terminology, structure of Earth, Causes of an earthquake, seismic waves,		
magnitude and intensity, seismograph, strong motion earthquake, strong motion earthquake, accelerogram,		
Elastic Rebound Theory, Theory of Plate Tectonics and Movement of Indian Plate, Seismic Zoning Maps of		
India and Comparative Study, Response Spectra, Strong Motion Characteristics.		
M 11 2		II (

Module 2 Earthquake Response of Systems

Hrs. 6

Structural dynamics: Free and forced vibrations of single degree of freedom systems, un-damped and viscously damped vibrations, equations of motion, Duhamel integral. Response Spectrum Theory: construction of Design Response Spectrum, effect of foundation and structural damping on design spectrum, design spectrum of IS 1893, evaluation of lateral loads.

Module 3 Earthquake Risk Analysis

Hrs. 6

Earthquake Effects on the Structures, Classification of Loads, Seismic Methods of Analysis, Seismic Design Methods, Seismic Damages during Past Earthquakes and Effect of Irregularities and Building Architecture on the Performance of RC Structures, Mathematical Modeling of Multi-Storied RC Buildings with Modeling of Floor Diaphragms and Soil-Foundation, Winkler model.

Module 4 Analysis of Seismic Forces

Hrs.10

Analysis of Seismic Forces on Building as per latest IS: 1893 by Equivalent Static Lateral Load Method and Response Spectrum Method, Introduction to Time History Method and Performance Based Analysis.

Seismic Retrofitting, Sources of Weakness in RC Framed Buildings, Classification of Retrofitting Techniques, Conventional and Non-Conventional Methods, Comparative Study of Various Methods and Case Studies,

Module 5 Ductility in Structures

Hrs.10

Introduction to Ductility, Factors Affecting Ductility, Ductility Requirements, Types of Ductility, Provisions as per latest IS 13920, Seismic Design and Ductile Detailing of Beam, Column, Beam Column Joint, Shear Wall, Elevated RC Circular Water Tanks

Introduction to Base Isolation Systems, IS Code Provisions for Retrofitting of Masonry Structures, Failure Modes of Masonry Structures and Repairing Techniques

Guidelines for Assignments:				
1	The candidate shall perform minimum six assignments consisting theoretical as well as numerical			
	aspects of the course.			

Text 1	Books:
1	P. Agarwal and M. Shrikhande – Earthquake Resistant Design of Structures, Prentice-Hall Publications.
2	Clough and Penzin – Dynamics of Structures, Mc-Graw Hills Publications.
3	Jai Krishna, A.R. Chandrashekharan and B Chandra – Elements of Earthquake Engineering, South Asian Publishers Pvt. Ltd.
4	Joshi P S et al Design of Reinforced Concrete Structures for Earthquake
5	Resistance Published by Indian Society of Structural Engineers, 2001.

SUBJE	ECT CODE	(Program Elective-IV)				CREDITS	
MCVST	TEPET 204C	Structural Audits					3
Teaching Work Load/week(Hrs.)					Examination Sc	heme(Mark	s)
Theory	Tutorial	Laboratory	Total	ISE MSE ESI			Total
3	0	0	3	20 20 60		60	100

Cours	Course Outcomes: Students will be able to				
CO1	Gain the knowledge of Byelaws, procedure of Structural audit and study the typical problems in				
CO2	Aware of causes and types of deterioration in structures.				
CO3	Develop skills for use of various Non destructive tests required during auditing of structures.				
CO4	Strength evaluation of existing structures.				
CO5	Acquire knowledge of legal procedure to conduct structural audits				

Course Contents

Introduction to Structural Audit, Objectives, Bye-laws, Importance, Various Stages involved, Visual
inspection: scope, coverage, limitations, Factors to be keenly observed.
Detailed Study of: RC frame and Masonry building: Structural and non structural system, Structural elements
concrete and its texture, sag and deflection in members, cracks: types and its fatality, Architectural features
like balconies, cornices, etc their vulnerabilities, Probable damages in Structural and non structural walls,
Plaster and paint Leakages and seepages, Plinth importance and how it affects suitability of building, Electric
wiring: various damages and their fatality.

Steel Structures: Corrosion, Connection defects, Connection strength, yielded member.

Introduction to Structural Audit

Hrs. 6

Module 1

Module 2 Causes and types of deterioration in Structures

Hrs. 6

Causes of deterioration in RC frame and Masonry building: Permeability of concrete, capillary porosity, air voids, Micro cracks and macro cracks, corrosion of reinforcing bars, sulphate attack, alkali silica reaction,. Causes of deterioration in Steel Structures: Uniform deterioration, pitting, crevice, galvanic, laminar, Erosion, cavitations, fretting, Exfoliation, Stress, Causes of corrosion in various members, causes of defects in connection (bolted and welded), Cracks

Module 3 Non Destructive Testing

Hrs. 6

Concrete Strength Assessment: Rebound hammer, Ultrasonic Pulse velocity, Penetration resistance, Pull out test, Chemical test: Carbonation test, Chloride test, Corrosion potential assessment: Cover meter survey, half cell potential, resistivity measurement, Fire damage assessment: Differential thermal analysis, X ray diffraction, Structural Integrity and soundness assessment: Radiography, Impact echo test, dynamic testing of structure, Interpretation and evaluation of test results.

Module 4 Strength Evaluation of Existing Structure

Hrs.6

Reserve strength, identification of critical sections, structural system and its validation, evaluation of damage in concrete and reinforcement, evaluation of building configuration.

Module 5 Approach to conduct Structural Audits

Hrs.10

Guidelines of Statutory Bodies, Legal aspects, Responsibility of calling Structural Audit, Scope of Investigation, Involvement of Original Consultants & Representatives of Statutory Bodies, Frequency of Structural Audits. Draft Structural audit report for up-gradation of existing building, Audit for continuation of usage of old Buildings, Audit for Buildings damaged due to Flood, Earthquakes, Fire, Storms/cyclones, Landslides, Cloud Burst, Tsunamis and accidental events—such as blasts/wilful damages

Text Books:

Indian Standard codes related with non destructive testing, Government Resolutions related to Structural Audits (BMC Act, etc.), Field manuals and reports by Expert Consultants.

SUBJE	SUBJECT CODE (Open Elective-V)					CREDITS		
MCVSTEPET 205A Research Methodology			ogy			3		
	Teaching Work Load/week(Hrs.)			Examination Scheme(Marks)				
Theory	Theory Tutorial Laboratory Total ISE MSE ESE				3	Total		
3	0	0	3	20 20 60				100

Cours	Course Outcomes: Students will be able to					
CO1	Understand concept of research, its types, methods, detailed procedure to identify and solve a					
CO2	Understand various mathematical techniques useful in research work.					
CO3	Understand various sampling techniques useful in research work.					
CO4	Understand various techniques for correlating and predicting different parameters with each other					

Module 2

Course Contents

Module 1 Hrs. 6

Introduction, meaning of research, objectives, types and role of scientific and engineering related research in advancing the knowledge, defining a research problem, formulation of a hypothesis, research design and features of good design, methods of data collection, approaches and techniques for data acquisition, processing, analyses and synthesis, Designing a questionnaire, Interpretation of results, Report Writing,

Aspects of literature review, Different ways of communication and dissemination of research results.

Descriptive Statistics, Probability and Distribution: Basic statistical concepts, Measures of central tendency and dispersion, Elements of Probability, Addition and multiplication theorems of probability, Examples, probability distributions, Binomial, Poisson and normal distributions.

Module 3 Hrs. 6

Sampling Techniques: Random sampling, simple random sampling and stratified random sampling, Non-sampling errors.

Module 4 Hrs.6

Correlation and Regression: Product moment correlation coefficient and its properties. Simple linear regression and multiple linear regressions, Statistical Inference: Statistical hypotheses, Error Types, level of significance, Chi-square Test and F distributions. Central limit theorem, Tests for the mean, equality of two means, variance, large sample tests for proportions, Confidence interval.

Module 5 Approach to conduct Structural Audits

Hrs.10

Hrs. 6

Design of Experiments: Analysis of variance. Data Classification, Completely randomized, randomized block, Factorial experiments, Yates technique

Multivariate Data Analysis: Multivariate normal distributions. Mean vector, variance, covariance matrix and correlation matrix, Step wise regression, Selection of best subject of variables, Classification and discrimination problems, Factor analysis, Principal component analysis. Data analysis using software's

Guidelines for Term Work:

Student shall critically read recent three to four journal articles within the broader field of their prospective specializations to identify research and knowledge gaps and accordingly formulate specific research questions. On the basis of these research questions student will retrieve additional relevant information and prepare well-articulated and content rich introductory problem description as well as proposed research methodology notes. The subject teacher and

research guide of the student shall assess this jointly.

Text E	Books:
1	Gupta S. C. and Kapoor V. K, "Fundamentals of Mathematical Statistics", Sultan Chand & Company New Delhi.
2	Gupta S. C. and Kapoor V. K, "Fundamentals of Applied Statistics", Sultan Chand & Com. N.Delhi.
3	Montogomery D. C., "Probability and Applied Statistics for Engineers", Wiley Int. Student Edition
4	Walpole Ronald E, Myers Raymond H and Myers Sharon L, "Probability & Statistics for Engineers and Scientists", 6 th Edition, Prentice Hall.
5	Ross S. M., "Introduction to Probability and Statistics for Engineers and Scientists", 3 rd Edi, Elsevier

Refer	ence Books:
1	Johnson R. and Wichern, "Applied Multivariate Statistical Analysis", 3rd Edi, Prentice Hall India
2	Douben K. J., "Research Methodologies – Principles and Guidelines of Applied Scientific Research", UNESCO-IHE Lecture Notes LN0317/06/01, Delft, the Netherlands.
3	Holtom D. and E. Fisher, "Enjoy Writing Your Science Thesis - a Step by Step Guide to Planning and Writing Dissertations and Theses for Undergraduate and Graduate Science Students", Imperial College Press. ISBN 1-86094-207-5, London, UK.
4	Kumar R., "Research Methodology- a Step-by-step Guide for Beginners", Sage Publi ISBN 0-7619-6213-1. London, UK.
5	Johnson R. and Wichern, "Applied Multivariate Statistical Analysis", 3rd Edi, Prentice Hall India

SUBJE	CT CODE	(Open Elective-V)			(Open Elective-V)		C	CREDITS
MCVST	MCVSTEPET 205B Soil Dynamics & Machine Foundations				3			
Teaching Work Load/week(Hrs.)					Examination Sc	heme(Mar	ks)	
Theory	Theory Tutorial Laboratory Total ISE MSE ESE				Ξ	Total		
3	0	0	3	20	20	60		100

Cours	Course Outcomes: Students will be able to					
CO1	Understand the fundamentals of wave propagation in soil media.					
CO2	Apply theory of vibrations to solve dynamic soil problems & to calculate the dynamic properties of					
CO3	Analyze the behaviour of a machine foundation resting on the surface and embedded foundation.					
CO4	Analyze the block foundation under different modes of vibrations.					
CO5	Understand the principles of design of foundations for reciprocating and impact machines as per IS					

Course Contents

Module 1	Theory of Vibrations	Hrs. 6
Basic Definitions	- Free and Forced Vibrations with and without Damping for Single Degree	e Freedom
Systems- Resonat	nce and its Effect, Magnification, Logarithmic Decrement, Transmissibili	ty, Natural

Frequency of Foundation – Soil system, Barkan's and IS methods, pressure bulb concept, Pauw's Analogy.

Module 2 Wave Propagation

Hrs. 6

Elastic Waves in Rods, Waves in Elastic Half Space, Dynamic Soil Properties, Field and Laboratory Methods of Determination – Uphole, Down Hole and Cross Hole Methods, Cyclic Plate Load Test, Block Vibration Test, Determination of Damping Factor.

Module 3 Machine Foundations Hrs. 6

Machine Foundations: Types, Design criteria, permissible amplitudes and bearing pressure.

Module 4 Block Foundation Hrs.6

Block foundation: Degrees of freedom - analysis under different modes of vibration.

Module 5 Two DoF Systems

Hrs.10

Analysis of Two Degree freedom systems under free and forced vibrations -Principles of Design of Foundations for reciprocating and impact machines as per IS code.

Vibration Isolation-Vibration Isolation: Types and methods, Isolating materials and their properties.

Guidelines for Assignments:

The candidate shall perform minimum six assignments consisting theoretical as well as numerical aspects of the Course.

Text B	Books:
1	P.Srinivasulu, G.V.Vaidyanathan, Handbook of Machine Foundations, Tata McGraw Hill.
2	Barken, Dynamics of Bases and Foundations, McGraw Hill Publishing Co., New York.
3	Richart, Hall and Woods, Vibration of Soils and Foundations, Prentice Hall, Eaglewood Cliffs, New Jersy, USA.

SUBJE	ECT CODE	(Open Elective-V)					C	CREDITS
MCVST	MCVSTEPET 205C Solution Procedures in Civil Engineering						3	
	Teaching Work Load/week(Hrs.)				Examination Sc	heme(Mai	rks)	
Theory	Tutorial	Laboratory	Total	ISE MSE ESE Total			Total	
3	0	0	3	20	20	60		100

Cours	e Outcomes: Students will be able to			
CO1	To study the basics of structural analysis and limitations of different methods.			
CO2	Acquire knowledge of linear and nonlinear analysis tools.			
CO3	Understand numerical method based tools to solve mathematical model.			
CO4	Understand and implement computer based numerical methods to analyze various structures.			
CO5	Understand experimental stress analysis concepts and modelling techniques. Develop algorithms and programs to analyse different structures using various programming languages.			

Module 1	Classica	l Analysis	Proce	dures				Hrs. 6)
Basics of equilib	rium and	stability,	Basic	assumptions	of Analysis,	Concepts	of Modelling,	Basis	of

Idealization, Limitations of hand computations.

Module 2 Advanced Computational Tools

Hrs. 6

Comparative study of various engineering software available, Limitations and strengths, Linear, Nonlinear analysis provisions, Data Processing using Spreadsheet Applications, Statistical Computational Tools, Interpretation of results.

Module 3 Numerical Computations

Hrs. 6

Basis of Computations, Operations on Computer, Solution of Simultaneous Equations, Methods for Roots of Equations, Solution of Ordinary Differential Equations, Numerical Integration

Module 4 Finite Element Analysis

Hrs.6

Discretization, Implementation of FEM -Calculation of Element Stiffness, Mass and Equivalent Nodal Loads, Assemblage of Structures Matrices, Boundary Conditions, Solutions of the overall problem, Calculations of Element Stresses, Computer Program Organization, Introduction to Non Linear Analysis, Formulation of a Geometrically Non-linear Problem, Non-linear material behavior, General Formulation of a Physically Nonlinear Problem, Introduction to Dynamic Analysis by FEM, Formulation of Dynamic Properties, Free Vibration, Steady-State and Transient Response Analysis for simple Problems.

Module 5 Experimental stress analysis

Hrs.10

Model Analysis, Structural similitude, Use of models, Scale effect, Structural and Dimensional analysis, Buckingham Pi Theorem, Indirect model analysis, Use of Begg's and Eney's Deformeters, Moment indicators, Design of models for direct and indirect analysis, Structural modeling and testing.

Computer Implementation of Solution Procedures

Implementation of above methods by algorithm development leading to programming in Fortran / C / C++ / Matlab or any other suitable platform

Guidelines for Assignments:

The candidate shall perform minimum six assignments consisting theoretical as well as numerical aspects of the Course.

Text B	Text Books:					
1	Reddy C. S., "Basic Structural Analysis", Tata McGraw Hill.					
2	Wang C.K., "Statically Indeterminate Structures", McGraw Hill					
3	Scheid F, "Numerical Analysis (Schaum's series)", Tata Mc-Graw Hill					

4	Krishnamoorthy C.S, "Finite Element Analysis", Tata McGraw Hill
5	Heteny M; Handbook of Experimental Stress Analysis, John Wiley and Sons, New

Refere	Reference Books:					
1	Chapra. S. C. &Canale R. P., "Numerical Methods for Engineers", by, Tata Mc-Graw Hill					
2	Zienkiewicz O.C, "Finite Element Method in Engineering Science", McGraw HillBook Co					
3	Cook R.D., et.al "Concepts and Applications of Finite Element Analysis", John Wiley & Sons (Asia) Pvt Ltd.					
4	Dally, Riley, "Experimental Stress Analysis", McGraw Hill Book Co., New York					

SUBJEC	CT CODE					(CREDITS	
MCVSTI	EELP 206	PG Lab-II	II Computer Software Laboratory 2					2
Teaching Work Load/week(Hrs.)					Examination Sc	heme(Mar	·ks)	
Theory	Tutorial	Laboratory	Total	ISE MSE ESE Tota			Total	
0	0	4	2	25		25 50		50

The stu of same	dents are expected to perform any five experiments out of list given below and submit report
EXP.1	Computer Software Laboratory using standard software (SAP/ ANSYS/ ETABS/ STAAD Pro) is recommended.
EXP.2	The analysis and design of the structures containing anyone of building (G+2) or bridges or industrial truss or transmission tower.
EXP.3	The comprehensive report of the analysis and design of the selected structure.

SUBJEC	CT CODE		Mini	Duningt			C	CREDITS
MCVSTI	EELP 207	Mini Project				4		
	Teaching Work Load/week(Hrs.)				Examination Sc	heme(Mar	ks)	
Theory	Tutorial	Laboratory	Total	ISE MSE ESE Tot				Total
0	0	8	4	25		25		50

Guidelines for Mini Project

Mini project shall be based on one of the topic chosen in consultation with the supervisor. Mini project may be interdisciplinary nature. Areas of recent techno-management development shall be explored. Research innovations may be considered as prospective areas. Mini project may be related with main project to explore possibilities of continuation further and to study the pre-requisites.

SUBJEC	CT CODE	17.					CREDITS	
MCVSTEHMT 208 History of Structural Engineering In India					2			
Teaching Work Load/week(Hrs.)					Examination Sc	heme(Marks)	
Theory	Tutorial	Laboratory	Total	ISE MSE ESE To		Total		
2	0	0	2	20	20	60	100	

Course Contents

Cours	e Outcomes: Students will be able to
CO1	Understand the foundational techniques of urban planning, masonry, and drainage systems in
	ancient Indian civilizations.
CO2	Analyze temple architecture styles and Islamic engineering techniques, focusing on load-bearing
	elements and material usage.
CO3	Evaluate structural innovations during the Mughal and early European colonial periods, including
	dome construction and advanced masonry.
CO4	Examine the impact of British engineering on Indian infrastructure, including bridge and dam
	construction techniques.
CO5	Assess modern advancements in high-rise construction, sustainable practices, and adherence to
	Indian structural codes.

Course Contents

Wioduic 1	Timelent ou actural Engineering	1113.0
Indus Valley Civ	ilization: Urban planning, drainage systems, brick masonry, load-bearing walls,	, and water
management.		

Vedic and Early Iron Age: Early wooden structures, iron usage in tools and construction, and references in Vedic texts to materials and methods.

Mauryan Period: Pillar construction techniques, stone masonry, Mauryan stupas (e.g., Sanchi Stupa), and

Hrs 6

Ancient Structural Engineering

Module 1

rock-cut structures.

Material Analysis: Baked bricks, mud mortar, wood, and early stone carving.

Module 2 Medieval Structural Engineering

Hrs. 6

Temple Architecture (South and North India):

- **Dravidian Style**: Structural design of temples (e.g., Brihadeeswara Temple), granite usage, and techniques in constructing gopurams.
- Nagara Style: Stonework, shikhara structures, load transfer methods, and buttress walls.

Early Islamic Architecture: Introduction of arches, domes, vaulting techniques, and lime mortar (e.g., Qutb Minar, Delhi).

Material Analysis: Advanced stone masonry, use of lime, brick, and mortars

Module 3 Early Modern Period Engineering

Hrs. 6

Mughal Structural Engineering:

- Structural features of the Taj Mahal: symmetrical dome construction, load distribution, and marble inlay techniques.
- Forts and Palaces: Large-scale stone masonry, multi-story structures, and integration of gardens and water channels.

European Influence: Early European fortifications, use of brickwork, lime mortar, and stone foundations.

Material and Structural Analysis: Sandstone, marble, brick masonry, and techniques for stability in large structures.

Module 4 Colonial Period and Early Modern Structural Practices

Hrs.6

Railway Bridges and Infrastructure: Design and engineering of iron and steel railway bridges (e.g., Pamban Bridge), cantilever and truss systems.

Hydraulic Structures: Dams and canals (e.g., Mullaperiyar Dam), early concrete use, gravity dam design principles.

Educational Institutions: Role of engineering colleges (e.g., Thomason College), influence of British standards and codes.

Material and Structural Analysis: Iron, steel, concrete, brick, and foundations for industrial architecture.

Module 5 Post-Independence Structural Engineering Developments

Hrs.10

National Infrastructure Projects: Large dams (e.g., Bhakra Nangal), concrete technology advancements, reinforced concrete (RC) design.

Urbanization and High-rise Structures: Evolution of high-rise buildings, metro structures, and earthquake-resistant design.

Sustainable Building Practices: Modern materials, green construction techniques, sustainable structural engineering in urban projects.

Standards and Professional Bodies: Overview of IS codes, development of seismic and wind load standards, and role of organizations (e.g., Institution of Engineers).

Guide	lines for Assignments:
	The candidate shall perform minimum six assignments consisting theoretical as well as numerical
	aspects of the Course.

Text	Books:
1	Indian Architecture (Buddhist and Hindu Periods)" by Percy Brown
2	Temples of South India by K.R. Srinivasan
3	The Art and Architecture of India by Benjamin Rowland
4	Engineering the Pyramids of India: Ancient to Modern by Nitin Kanwar
5	Mughal Architecture: An Outline of Its History and Development (1526-1858)" by Catherine B. Asher

Refer	Reference Books:							
1	Building Jaipur: The Making of an Indian City by Vibhuti Sachdev and Giles Tillotson							
2	Bridge Engineering by S.P. Bindra							
3	A History of Architecture on the Comparative Method, by Banister Fletcher							
4	Concrete Technology: Theory and Practice by M.S. Shetty							
5	Indian Dams and Irrigation Engineering by K.C. Jain and P.L. Shah							

Dr. Babasaheb Ambedkar Technological University, Lonere

Teaching & Evaluation Scheme for M. Tech. in Civil Engineering with Specialization in Structural Engineering

Sr.	Course Code	Course Title		Teaching Scheme			Evaluation Scheme			
No.	Course Couc			T	P	ISE	MSE	ESE	Total	Credit
		Semester-III								
1	MCVSTEMDT 301	MOOC/SWAYAM/ NPTEL	3			20	20	60	100	3
2	MCVSTEMDT 302	PLATFORM COURSES/Self Study. (It is desirable to	3			20	20	60	100	3
3	MCVSTEHMT 303	choose one course from each of PE,OE &AE)	3			20	20	60	100	3
4	MCVSTEELP 304	Seminar-I			4	25		25	50	2
5	MCVSTEELP 305	Dissertation Stage -I			20	50		50	100	10
	·	TOTAL	9		24	135	60	255	450	21

SUBJE	CT CODE						(CREDITS
MCVST	TEMDT 301 TEMDT 302 TEHMT 303	Multidisciplinary Minor Courses						3
Teaching Work Load/week(Hrs.) Examination Scheme						cheme(Ma	rks)	
Theory	Tutorial	Laboratory	Total	ISE	MSE	ESE	3	Total
3	0	0	3	20	20	20 60		100

Course Contents

Sr.No.	Multidisciplinary Minor Courses
A	MOOC/SWAYAM/ NPTEL -Project Management and Intellectual Property Rights (Self Study) Student may select this course from either MOOC/SWAYAM / NPTEL pool or any other approve reputed source. The submission of course completion certificate is mandatory. MCVSTEMDT 301/302, MCVSTEHMT 303 - Institute has to take care of registration of subjects with detailed syllabus in first two weeks of beginning of the semester with exam department of DABATU.

SUBJEC	CT CODE		Care	ainan T		C	CREDITS	
MCVST	EELP 304		Seminar I					
	Teaching Wo	ork Load/week(Hr	s.)	Examination Scheme(Marks)				
Theory	Tutorial	Laboratory	Total	ISE MSE ESE				Total
0	0	4	2	25	- 25			50

Guidelines for Seminar

Seminar I shall be presented on one of the advanced topics chosen in consultation with the supervisor. Students must study latest literature. The concepts must be clearly understood and presented by the student. The student should use all modern methods of presentation. The student expects minimum 03 presentations within period of semester. A hard copy of the report should be submitted before delivering the seminar. A copy of the report in soft form must be submitted to the Supervisor along with other details, if any.

SUBJI	ECT CODE		9122			CREDITS		
MCVS	MCVSTEELP 305 Dissertation Stage-I						10	
	Teaching Wo	rk Load/week(Hr	s.)	Examination Scheme(Marks)				
Theory	Tutorial	Laboratory	Total	ISE MSE ESI			3	Total
0	0	20	20	50	- 50			100

Course Contents

Dissertation Stage-I

Students can take Industry Internship along with Dissertation Stage –I. Students must maintain regular reporting with Dissertation supervisor regarding status of Dissertation . Project-I is an integral part of the fina project work. In this, the student shall complete the partial work of the project which will consist of problem statement, literature review, project overview, scheme of implementation that may include mathematical model/block diagram/ PERT chart, and layout and design of the proposed system/work. As a part of the progress report of project-I work; the candidate shall deliver a presentation on progress of the work on the selected dissertation topic. It is desired to publish the paper on the state of the art on the chosen topic in international conference/ journal. The student shall submit the duly certified progress report of project -I in standard format for satisfactory completion of the work duly signed by the concerned guide and head of the department/institute.

Dr. Babasaheb Ambedkar Technological University, Lonere

Teaching & Evaluation Scheme for M. Tech. in Civil Engineering with Specialization in Structural Engineering

Sr. No	Course Code	Course Title		Teaching Scheme			Evaluation Scheme				
•	Course Code			T	P	ISE	MSE	ESE	Total	Cre	
Semester-IV											
1	MCVSTEELP 401	Dissertation Stage-II			40	100		100	200	20	
		TOTAL			40	100		100	200	20	

SUBJE	CT CODE							
MCVST	STEELP 401 Dissertation Stage-II 2			Dissertation Stage-II				20
	Teaching Wor	k Load/week(Hrs	.)	Examination Scheme(Marks)				
Theory	Tutorial	Laboratory	Total	ISE MSE ESE			3	Total
0	0	40	20	100 100			200	

Course Contents

Dissertation Stage-II

In Project Stage - II, the student shall complete the remaining part of the project, which will consist of the simulation/ analysis/ synthesis/ implementation / fabrication of the proposed project work, work station, conducting experiments and taking results, analysis and validation of results and drawing conclusions. It is mandatory to publish the paper on the state of the art on the chosen topic in international conference/ journal. The student shall prepare the duly certified final report of project work in standard format for satisfactory completion of the work duly signed by the concerned guide and head of the department/institute.