Dr. Babasaheb Ambedkar Technological University (EstablishedasUniversityofTechnologyintheStateofMaharashtra) (Under Maharashtra Act No. XXIX of 2014) P.O. Lonere, Dist. Raigad, Pin 402 103, Maharashtra Telephone and Fax. 02140 - 275142 www.dbatu.ac.in

CURRICULUM UNDER GRADUATE PROGRAMME

B. TECH.

3nd year V and VI Sem. MECHATRONICS ENGINEERING

ACADEMIC YEAR 2024-2025

Abbreviations

BSC: Basic Science Course

ESC: Engineering Science Course

PCC: Professional Core Course

PEC: Professional Elective Course

OEC: Open Elective Course

HSSMC: Humanities and Social Science including Management Courses

PROJ: Project work, seminar and internship in industry or elsewhere

		Seme	ster V							
Course	Course Code	Course Title	Teach	ning Scl	Evaluation Scheme					
Category			L	T	Р	CA	MS E	ES E	Tota l	No. of Credits
PCC 12	BTMXC 501	Metrology & measurements	3	1	-	20	20	60	100	4
PCC 13	BTMXC 502	Manufacturing Technologies	3	1	-	20	20	60	100	4
PCC 14	BTMXC 503	Data Acquisition System	3	1	-	20	20	60	100	4
PEC 2	BTMXPE 504A- C	Elective-II	3	-	-	20	20	60	100	3
OEC 1	BTMOE 505A,B, D/BTMXOE505 A	Open Elective-I	3	-	-	20	20	60	100	3
PCC15	BTMXL 506	Metrology & Measurements Lab	-	-	2	60	-	40	100	1
PCC16	BTMXL 507	Manufacturing Technologies Lab			2	60		40	100	1
PROJ-3	BTMXI408	IT – 2 Evaluation	-	-	-	-	-	100	100	1
		Total	15	3	4	220	100	480	800	21

Course Structure for Semester V B.Tech in Mechatronics (2024-25)

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course HSSMC = Humanities and Social Science including Management Courses

Elective II

Sr. No	Course code	Course Name
1	BTMXPE 504A	Data Processing and Statistics
2	BTMXPE 504B	MEMS/NEMS
3	BTMXPE 504C	Python Programming

Open Elective I

Sr.No.	Course code	Course Name
1	BTMOE505A	Solar Energy <mark>(Mechanical)</mark>
2	BTMOE505B	Renewable Energy Sources (Mechanical)
3	BTMOE505D	Product Design Engineering (Mechanical)
4	BTMXOE 505A	Internet of Things and Cloud based Manufacturing

Course Structure for Semester VI B. Tech in Mechatronics (w.e.f. 2024-25)

Semester VI										
C			Teach	ing Scl	Evaluation Scheme				Noof	
Course Category	Course Code	Course Title	L	Т	Р	CA	MS E	ES E	Tota l	No. of Credits
PCC17	BTMXC 601	Control System Engineering	3	1	-	20	20	60	100	4
PCC18	BTMXC 602	Design of Machine Elements	3	1	-	20	20	60	100	4
PEC3	BTMXPE 603A- C	Elective-III	3		-	20	20	60	100	3
PEC4	BTMXPE 604A/BTMPE60 4 B,C, BTAPE 604B	Elective-IV	3		-	20	20	60	100	3
OEC2	BTMOE 605A-E/ BTMXOE 605A	Open Elective-II	3		-	20	20	60	100	3
PCC19	BTMXCL 606	Computer Aided Design Lab			2	60		40	100	1

PCC20	BTMXCL 607	Control System Engineering Lab			2	60		40	100	1
PROJ-4	BTMXS S608	B Tech Seminar	-	-	2	60		40	100	1
PROJ-5	BTMXP 609	Technical Project for Community Services (TPCS)	-	-	2	60	-	40	100	1
PROJ-6	BTMXI 610 (IT- 3)	Field Training / Industrial Training (minimum of 4 weeks which can be completed partially in fifth semester and sixth semester or in one semester itself).	-	-	-	-	-	-	-	Credits to be evaluate d in Sem VII
	15	2	08	460	100	500	1000	21		

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course HSSMC = Humanities and Social Science including Management Courses

Elective III:

Sr.No	Course code	Course Name
1	BTMXPE 603A	Intelligent Systems and Control
2	BTMXPE 603B	Adaptive and Predictive control of Mechatronics Systems
3	BTMXPE 603C	Virtual Instrumentation

Elective IV:

Sr No	Course code	Course Name
1	BTMXPE 604A	Computer Integrated Manufacturing
2	BTMPE604B	Product Life Cycle Management (Mechanical)
3	BTMPE604C	Finite Element Method (Mechanical)
5	BTAPE604B	Computational Fluid Dynamics (Mechanical)

Open Elective II:

Sr.No	Course code	Course Name							
1	BTMOE605A	Quantitative Techniques and Project Management (Mechanical)							
2	BTMOE605B	Nanotechnology (Mechanical)							
3	BTMOE605C	Energy Conservation and Management (Mechanical)							
4	BTMOE605D	Wind Energy (Mechanical)							
5	BTMOE605E	Introduction to Probability Theory and Statistics (Mechanical)							
6	BTMXOE 605A	Industrial Engineering							

Metrology and Measurements

BTMXC 501 PCC 12	Metrology and Measurements	3-1-0	4 Credits
------------------	----------------------------	-------	-----------

Teaching Scheme:	Examination Scheme
Lecture: 3 hrs/week	Continuous Assessment: 20 MarksMid Semester
Tutorial: 1hr/week	Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration: 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Identify techniques to minimize the errors in measurement
CO2	Understand methods and devices for measurement of length, angle, and gear and thread parameters, surface roughness and geometric features of parts.
CO3	Choose limits for plug and ring gauges.
CO4	Explain methods of measurement in modern machineries
CO5	Illustrate the gear metrology and describe working of measuring machines
CO6	Identify various measurement methods for thermo-mechanical properties and geometrical
	forms

Mapping of course outcomes with program outcomes

Course					Prog	ram O	utcome	es				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				3								2
CO2		2	2		2							
CO3			2	3	2							
CO4						3						
CO5	1					2		3	3		3	2
CO6	1					2		3	3		2	2

Course Contents:

Unit 1: Measurement Standard and Comparators

Measurement Standard, Principles of Engineering Metrology, Line end, wavelength, Traceability of Standards. Types and Sources of error, Alignment, slip gauges and gauge block, Linear and Angular Measurement (Sine bar, Sine center, Autocollimator, Angle Dekker, and Dividing head), Calibration. Comparator: Mechanical, Pneumatic, Optical, Electronic (Inductive), Electrical (LVDT).

Unit 2: Interferometry and Limits, Fits, Tolerances

Principle, NPL Interferometer, Flatness measuring using slip gauges, Parallelism, Laser Interferometer, Surface Finish Measurement: Surface Texture, Measuring Surface Finish by Stylus probe, Tomlinson and Talysurf. Design of Gauges: Types of Gauges; Limits, Fits, Tolerance; Terminology for limits and Fits.Indian Standard (IS 919-1963), Taylor''s Principle.

Unit 3: Metrology of Gears and Measuring Machines

Gear Metrology: Gear error, Gear measurement, Gear Tooth Vernier; Profile Projector, Tool marker"s microscope. Advancements in Metrology: Universal Measuring Machine, Lasers in Metrology.

Unit 4: Measurement of Thermo-Mechanical Properties

Measurement of temperature, pressure, velocity, Measurement of heat flux, volume/mass flow rate, temperature in flowing fluids, Measurement of thermo-physical properties, radiation properties of surfaces, vibration and noise

Unit 5: Measurement of Geometrical Forms

Measurement of geometric forms, straightness, flatness, roundness, etc. Mechanical and optical methods - optical projectors, tool maker's microscope, and autocollimators, Introduction to CMM, probes for CMM, CMM Software.

Texts:

- 1. I. C. Gupta, "Engineering Metrology", Dhanpat and Rai Publications, New Delhi, India.
- 2. R. K. Jain, "Engineering Metrology", Khanna Publications, 17th edition, 1975.
- 3. K. L. Narayana, "Engineering Metrology", Scitech Publications, 2nd edition.

References:

- 1. Ernest O. Doebelin; Measurement Systems: Application and Design; McGraw-Hill, 2004
- 2. K. J. Hume, "Engineering Metrology", McDonald Publications, 1st edition, 1950.
- 3. A. W. Judge, "Engineering Precision Measurements", Chapman and Hall, London, 1957.
- 4. J. F. Galyer, C. R. Shotbolt, "Metrology for Engineers", Little-hampton Book Services Ltd.,5th edition, 1969.
- 5. V. A. Kulkarni, A. K. Bewoor, "Metrology & Measurements", Tata McGraw Hill Co. Ltd.,1st edition, 2009.
- 6. Richard S. Figliola, D. E. Beasley, "Theory and Design for Mechanical Measurements", Wiley India Publication.

[07 Hours]

[07 Hours]

[07 Hours]

Manufacturing Technologies

BTMXC 502	PCC 13	Manufacturing Technologies	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration: 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Identify castings processes, working principles and applications and list various defects in metal casting
CO2	Understand the various metal forming processes, working principles and applications
CO3	Classify the basic joining processes and demonstrate principles of welding, brazing and soldering.
CO4	Understand center lathe and its operations including plain, taper turning, work holdingdevices and cutting tool.
CO5	Understand milling machines and operations, cutters and indexing for gear cutting.
CO6	Know shaping, planning and drilling machines

Program Outcomes Course PO5 PO6 PO7 PO8 PO9 Outcomes PO10 PO11 PO12 PO1 PO2 PO3 PO4 CO1 CO2 CO3 CO4 CO5 CO6

Mapping of course outcomes with program outcomes

Course Contents:

Unit 1: Introduction and Casting Processes

What is manufacturing? Selection of manufacturing processes, Introduction to casting; solidification of metals: Pure metals, Alloys; fluid flow; fluidity of molten metal; heat transfer: Solidification time, Shrinkage, Porosity; Metal casting processes: Sand casting, shell molding, investment casting; Permanent-mold casting, vacuum casting, die casting, centrifugal casting.

Unit 2: Metal Forming

Rolling and Forging Processes: Introduction to Rolling; Various Rolling Processes and Rolling Mills. Introduction to forging, Open-die forging; Impression-die and Closed-die forging; various forging Operations; Forging Machines.

Extrusion and Drawing: Introduction; Extrusion Process; Hot Extrusion; Cold Extrusion: Impact extrusion, Hydrostatic Extrusion; Extrusion Defects; Extrusion Equipment; Drawing Process; Drawing Practice; Drawing Equipment.

Unit 3: Joining Processes

Oxy-fuel-gas Welding; Arc-Welding Processes: Non consumable Electrode; Arc-welding Processes: Consumable Electrode, Shielded Metal-arc Welding, Submerged-arc Welding, Gas Metal-arc Welding. Introduction to solid state welding, Friction Welding, Resistance Welding: Spot, Seam, Projection Welding. Introduction to brazing and soldering.

Unit 4: Machining Processes: Turning and Hole Making

Introduction; The Turning Process; Lathes and Lathe Operations: Lathe Components, Work holding Devices and Accessories, Lathe Operations, Types of Lathes. Boring and Boring Machines; Drilling Machines: Drills, Drill Materials and Sizes, Types of Drilling Machines, Reaming operation and Reamers; Tapping and Taps.

Unit 5: Machining Processes: Milling, Broaching and Gear Manufacturing [07 Hours] Introduction, Milling and Milling Machines: Peripheral Milling, Face Milling, End Milling, Other Milling Operations and Milling Cutters, Tool holders, Milling Machines; Planning and Shaping: Operations and machines; Broaching and Broaching Machines; Gear Manufacturing by Machining: Form Cutting, Gear Generating by hobbling.

Text:

1. Serope Kalpakjian and Steven R. Schmid, "Manufacturing Engineering and Technology", Addison Wesley Longman (Singapore) Pte. India Ltd., 6th edition, 2009.

References:

- 1. Milkell P. Groover, "Fundamentals of Modern Manufacturing: Materials, Processes, and Systems", John Wiley and Sons, New Jersey, 4th edition, 2010.
- 2. Paul DeGarmo, J.T. Black, Ronald A. Kohser, "Materials and Processes in Manufacturing", Wiley, 10th edition, 2007.

[07Hours]

[07Hours]

Data Acquisition System

BTMXC503	PCC14	Data Acqu	isition System	3-1-0	4 Credits					
Teaching Scheme	e: Examinati	ion Scheme:	Teaching Scheme: Examination Scheme:							
Lecture: 3 hrs/wee	k		Continuous Assessment: 20 Marks							
Tutorial: 1 hr/wee	k		Mid Semester Exam: 20 Marks							
			End Semester Ex	kam: 60 Ma	rks(Duration 03					
			hrs)							

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Differentiate between single and multichannel Data Acquisition System
CO2	Describe the functional blocks of data acquisition system.
CO3	Operation of different DACs, ADCs and non-linear ADCs.
CO4	Understand data convertor and their applications
CO5	Understand interfacing of ADC and DAC with microprocessor

Mapping of course outcomes with program outcomes

Course						Progra	m Outc	omes				
Outcomes	PO1	PO2	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO12
CO1	1	2								2		
CO2			1					2			2	
CO3	1			3		2			2			3
CO4	1		1						2			
CO5	1			3		2			1			3

Unit I: Objective of a Data Acquisition System, single channel Data Acquisition System, Multichannel Data Acquisition System, Components used in Data Acquisition System, Converter characteristics, resolution, Non-linearity, settling time, Monotonicity.

Unit II: Analog to digital converters (ADCS): Classification of A/D converters, Parallel feedback, successive approximation, Ramp comparison, Dual slope integration, voltage to frequency, voltage to time logarithmic type of voltage to time logarithmic types of ADCS.

Unit III: Non-linear data converters (NDC): Basic NDC configurations –Some common NDACS and NADCS –Programmable non-linear ADCS, NADC using optimal sized ROM, High speed hybrid NADC, PLS based NADC, Switched capacitor NDCS. ADC applications: Data Acquisition systems, Digital signal processing systems, PCM voice communication systems, test and measurement instruments, electronic weighing machines.

Unit IV: Digital to analog converters (DACS): Principles and design of -Parallel R-2R, weighted resistor, inverted ladder, D/A decoding -Codes other than ordinary binary.

Unit V: Data converter applications: DAC applications, Digitally programmable V/I source, Arbitrary waveform generators, digitally programmable gain amplifiers, Analog multipliers/ dividers, Analog delay lines, interfacing of DACS and ADCS to a microprocessor.

Text Books/References:

- 1. Electronic data converters fundamentals and applications –Dinesh K. Anvekar, B.S. Sonde –Tata McGraw Hill.
- 2. D/A and A/D converters a user"s handbook of -E.R. Hnateck, Wiley3.Data converters by G.B.Clayton.
- 3. Electronic Analog/ Digital conversions -Hermann Schmid Tata McGraw Hill.
- 4. Electronic instrumentation by HS Kalsi-TMH 2ndEdition, 2004.

Elective II: Data Processing and Statistics

BTMXPE504A	Data Processing and Statistics	3-0-0	3 Credits						
Teaching Scheme:Examination Scheme:									
Lecture: 3 hrs/week	: 20 Marks								
Tutorial: 0 hr/week	Mid Semester Exam: 20	Mid Semester Exam: 20 Marks							
	End Semester Exam: 60	Marks (Dur	ation 03 hrs)						

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the classification of data set and representation
CO2	Measure and calculate statistical parameters
CO3	Interpret the results of Regression and Correlation Analysis, for different applications
CO4	Apply the mathematical and probabilistic foundations of statistical inference in computing
CO5	Describe Simple random sampling and tests of significance
CO6	Apply the mathematical and probabilistic foundations to solve engineering problems

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2		1				2			2	
CO2	3	2	1			1		1			2	
CO3	1		1	2		2	1	2		2	1	
CO4	3	2		1		1				1		2
CO5	3	2		2		1				1		2
CO6	3	2		1		2				2		2

Course Contents:

Unit 1: Data and Representation

Introduction to Statistics, Collection of data, classification of data: Primary data, Secondary data, Presentation of data: Diagrammatic and Graphical Representation: Histogram, frequency curve, frequency polygon.

Unit 2: Measures of Central Tendency and Dispersion

Arithmetic Mean (A.M.) Definition, Mode, Median, Partition Values: Quartiles, Deciles and Percentiles, Box Plot, Percentile ranks. Means of transformed data, Geometric Mean (G.M.)

[07 Hours]

Definition, Harmonic Mean (H.M.), Weighted Mean : Weighted A.M., G.M. and H.M. Range, Mean deviation Mean square deviation, Variance and Standard Deviation.

Unit 3: Correlation and Regression

Normal distribution, types, importance, methods of measuring correlation-scatter diagram, Karl Pearson's Coefficient of Correlation and Spearman's rank Correlation. Regression lines, Difference between regression and correlation, uses of Regression.

Unit 4: Sampling theory and tests of significance

Methods of sampling: Simple random sampling with and without replacement (SRSWR and SRWOR) stratified random sampling, systematic sampling. Tests of significance – z, t, chi-square and F tests.

Unit 5: Probability

Sample space and events, probability measure and probability space, random variable as a measurable function, distribution function of a random variable, discrete and continuous-type random variable, stochastic independence of events and of random variables, expectation and moments of a random variable,

Texts:

- 1. S. C. Gupta Fundamentals of Statistics, Himalaya Publishing House.
- 2. Mood, A. M., Graybill, F. A. And Boes, D.C. : Introduction to the Theory of Statistics, McGraw Hill.

References:

- 1. Biswas and Srivastava A textbook, mathematical Statistics, Ist Edition, Narosa Publishing House, New Delhi.
- 2. Gupta, S.C. and V. K. Kapoor Mathemathical Statistics, Sultan Chand and sons. Hogg, R.V. and Craig, A.T: Introduction to Mathematical Statistics, McMilla

[07 Hours]

[07 Hours]

Elective II: MEMS/NEMS

PEC2	MEMS	S / NEMS	3-0-0	3 Credits				
xaminati	ion Scheme:	Teaching Scheme: Examination Scheme:						
		Continuous Assessment: 20 Marks						
		Mid Semester Exam: 20 Marks						
End Semester Exam: 60 Marks(
	PEC2	PEC2 MEMS	PEC2 MEMS / NEMS xamination Scheme: Teaching Schen Continuous Asse Mid Semester Ex End Semester Ex	PEC2 MEMS / NEMS 3-0-0 xamination Scheme: Teaching Scheme: Examination Continuous Assessment: 20 Mid Semester Exam: 20 Ma End Semester Exam: 60 Ma				

hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the multidisciplinary aspects of MEMS and NEMS and their applications
CO2	Review MEMS technology, micro sensors, micro-actuators, their types and
	applications.
CO3	Understand the methods of fabrication and modelling methods.
CO4	Appreciate the underlying working principles of MEMS and NEMS
CO5	Design devices and model these devices

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO1	2		2			1						1
CO2	3	1	1		2							2
CO3	2		2	2	3	1					2	
CO4	2	2	3		2		2					
CO5	2		3		2		1					2

Unit I: Introduction and Historical Background:

Scaling Effects: Need of Miniaturization, Microsystems versus MEMS, Need of Microfabrication, Smart Materials, Structures and Systems, Integrated Microsystems, Applications of Smart Materials and Microsystems.

Unit II: Micro/Nano Sensors, Actuators and Systems overview: Case studies:

Silicon Capacitive Accelerometer, Piezoresistive Pressure Sensor, Conduct metric Gas Sensor, An Electrostatic Comb Drive, A Magnetic Microrelay, Portable Blood Analyzer, Piezoelectric Inkjet Print Head, Micromirror Array for Video Projection, Smart Materials and Systems.

Unit III: Review of Basic MEMS / NEMS fabrication modules:

Oxidation, Deposition Techniques, Lithography (LIGA), Etching, Silicon as a Material for

Micromachining, Specialized Materials for Microsystems, Advanced Processes for Microfabrication.

Unit IV: Micromachining:

Surface Micromachining, sacrificial layer processes, Stiction; Bulk Micromachining, Isotropic Etching and Anisotropic Etching, Wafer Bonding.

Unit V: Mechanics of solids in MEMS / MEMS:

Stresses, Strain, Hookes"s law, Poisson effect, Linear Thermal Expansion, Bending; Energy methods, Overview of Finite Element Method, Modelling of Coupled Electromechanical Systems.

Text Books/References:

- 1. G. K. Ananthasuresh, K. J. Vinoy, S. Gopalkrishnan K. N. Bhat, V. K. Aatre, Micro and Smart Systems, Wiley India, 2012.
- 2. S. E. Lyshevski, Nano-and Micro-Electromechanical systems: Fundamentals of Nanoand Microengineering, Vol. 8. CRC press, 2005.
- 3. S. D. Senturia, Microsystem Design, Kluwer Academic Publishers, 2001.
- 4. M.H. Bao, Micromechanical Transducers: Pressure sensors, accelerometers, and Gyroscopes, Elsevier, New York, 2000.
- 5. G. Kovacs, Micromachined Transducers Sourcebook, McGraw-Hill, Boston, 1998.
- 6. M. Madou, Fundamentals of Microfabrication, CRC Press, 1997.

Elective II: Python Programming

BTMXPE 504C	PEC2	Python P	rogramming	3-0-0	3 Credits
Teaching Scheme:	Examinati	ion Scheme:	Teaching Scher	ne: Examir	nation Scheme:
Lecture: 3 hrs/week			Continuous Asse	essment: 20	Marks
			Mid Semester E	xam: 20 Ma	urks
			End Semester Ex	xam: 60 Ma	rks(Duration 03
			hrs)		

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Read, write, execute by hand simple Python programs
CO2	Structure simple Python programs for solving problems
CO3	Decompose a Python program into functions
CO4	Represent compound data using Python lists, tuples, dictionaries
CO5	Read and write data from/to files in Python Programs

Mapping of course outcomes with program outcomes

Course						Progra	m Outc	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12
CO1	2	1	3		3		1					2
CO2	2	2	3		3	1		1		2		3
CO3	2	1	3		3	1		1				3
CO4	1	2	3		3	1		1		2		2
CO5	2	1	3		3		1					2

Course contents:

Unit 1: Introduction to python programming

Introduction to the Python Programming Language, Working with Python, Numeric Data Types, String Data Type and Operations, Standard Data Types, Data Type Conversions, Commenting in Python

Unit 2: Variables and operators

Understanding Python Variables, Multiple Variable Declarations, Python Basic Statements, Python Basic Operators, Precedence of Operators, Expressions

Unit 3: Control flow and loops

Conditional Statements, Loops in Python, While Loop, Loop Manipulation

Unit 4: Functions

Defining Your Own Functions, Calling Functions, Passing Parameters and Arguments, Python Function Arguments, Anonymous Functions (Lambda Functions), Fruitful Functions (Function Returning Values), Scope of Variables in a Function, Powerful Lambda Functions in Python

Unit 5: I/O and error handling in python

Introduction to I/O (Input/Output), Writing Data to a File, Reading Data from a File, Additional File Methods, Introduction to Errors and Exceptions, Handling I/O Exceptions, Runtime Errors and Handling Multiple Exceptions.

Text Book(s) :

- 1. Core Python Programming" by R. Nageswara Rao (Dreamtech)
- 2. Think Python: How to Think Like a Computer Scientist" (2nd Edition) by Allen B. Downey (Shroff/O,,Reilly Publishers, 2016)
- 3. Python Programming: A Modern Approach" by Vamsi Kurama (Pearson)
- 4. Data Structures and Algorithmic Thinking with Python" by Narasimha Karumanchi

Reference Books:

- 1. "Core Python Programming" by Wesley J. Chun (Pearson)
- 2. Introduction to Python" by Kenneth A. Lambert (Cengage)
- 3. "Learning Python" by Mark Lutz (O'Reilly)

Open Elective II: Internet of things and Cloud based Manufacturing

BTMXOE505A	Internet of things and Cloud based	3-0-0	3 Credits
	Manufacturing		

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 0 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand IOT and Cloud computing
CO2	Interpret machine to machine communication
CO3	Use of information system in Manufacturing
CO4	Describe the demand drive and sustainable resource management
CO5	State Internet of Things Privacy, Security and Governance

Mapping of course outcomes with program outcomes

Course						Progra	m Out	comes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1		1	2						1
CO2	1	2			1	1						
CO3	2	1			2			1				2
CO4	2	2			2			1				2
CO5	3	2	1		1	2						3

Course Contents:

Unit1: IoT and Cloud Computing

Introduction, Physical design of IoT, Logical design of IoT, IoT enabling technologies, Domain specific IoTs, IoT design methodology, logical design, IoT physical devices (such as Raspberry Pi, pcDuino, Beaglebone black, Cubieboard), Introduction to cloud computing: cloud models, cloud service examples, cloud based services & applications, Cloud service and platforms

Unit2: Applied Machine to Machine Communication

Introduction to M2M, Description of M2M Market, Segments/Applications – Automotive, Smart Telemetry, Surveillance and Security, M2M Industrial Automation, M2M Terminals and

[07 Hours]

Modules.

Unit3: Information Systems in Manufacturing

Manufacturing organizations, management, and the networked enterprises, Globalization challenges and opportunities, Dimensions of Information systems, Approaches to study information s y s t e m, Technical and Behavioral approach, Information Technology Infrastructure.

Unit4: Introduction to Smart Manufacturing

Introduction; Demand Driven and Integrated Supply Chains; Dynamically Optimized Manufacturing Enterprises (plant + enterprise operations); Real Time, Sustainable Resource Management (intelligent energy demand management, production energy optimization and reduction of GHG), Online Predictive Modelling, Monitoring and Intelligent Control of Machining/Manufacturing and Logistics/Supply Chain Processes.

Unit5: Internet of Things Privacy, Security and Governance

Introduction, Overview of Governance, Privacy and Security Issues, Security, Privacy and Trust in IoT-Data-Platforms for Smart manufacturing, First Steps Towards a Secure Platform, Data Aggregation for the IoT in Smart manufacturing.

Texts:

1. Bahga and V. Madisetti, Internet of Things, A hands-on approach, Create Space Independent Publishing Platform, 1st edition, 2014, ISBN: 978-0996025515.

References:

- 1. Bahga and V. Madisetti, Cloud Computing, A hands-on approach, Create Space Independent Publishing Platform, 1st edition, 2013, ISBN: 978-1494435141
- 2. D. Boswarthick, O. Elloumi, and O. Hersent, M2M communications: A systems approach, Wiley, 1st edition, 2012, ISBN: 978-1119994756
- 3. J. Edward Carryer, et al., Introduction to Mechatronic Design, Prentice Hall, 1st edition, 2010, ISBN: 978-8131788257.
- 4. K. Laudon and J. Laudon, Management Information Systems, 14th edition, Pearson Higher Education, 2016, ISBN: 9780136093688.

[07 Hours]

[07 Hours]

Metrology and Measurements Lab

BTI	MXL 506	PCC 15	Metrology and Measurements Lab	0-0-2	1 Credits		
	Teachi	ng Scheme:	Examination Sc	heme:			
	Practical"s: 2 hrs/week		Continuous Assessment: 60 Marks End Semester Exam: 40 Marks				

List of Practical's/Experiments (Minimum 08 experiments out of the following):

- 1. Calibration of pressure gauge using dead weight gauge calibrator.
- 2. Measurement of displacement using LVDT.
- 3. Calibration of strain gauge.
- 4. Measurement of flow rate using orifice, venturi and Rota- meters and their error analysis.
- 5. Measurement of flow rate using microprocessor based magnetic flow meter, vortex, ultrasonic, turbine flow meters
- 6. Determination of characteristics of thermocouples, RTD, thermistors
- 7. To calibrate the given micrometer using slip gauge as standard
- 8. Measurement of taper by sine bar.
- 9. To calibrate a dial gauge indicator.
- 10. Study and use of optical flat.
- 11. Surface roughness measurement.
- 12. Measurements using Tool makers" microscope
- 13. To measure the major, minor and effective diameter by using floating carriage diameter measuring machine.
- 14. Inspection of gear by Gear Rolling Tester

Manufacturing Technologies Lab

507 100 10 100 100 100 100 100 200 00 2 100 100	BTMXL PC 507	C 16 Manu	Ifacturing Technologies Lab	0-0-2	1 Credit
---	-----------------	-----------	-----------------------------	-------	----------

Teaching Scheme:	Examination Scheme:
Practical"s: 2 hrs/week	Continuous Assessment: 60 Marks
	End Semester Exam: 40Marks

List of Practical's/Experiments (Minimum 6 practical's out of the following)

- 1. Making a job with a process plan involving plain, step and taper turning as well thread cutting operations on a Centre lathe.
- 2. Preparation of process planning sheet for a job including operations such as milling, drillingand shaping.
- 3. Making a spur gear using universal dividing head on milling machine.
- 4. Making a simple component by sand casting using a split pattern.
- 5. Cutting of a steel plate using oxyacetylene flame cutting /plasma cutting.
- 6. Making a butt joint on two stainless steel plates using TIG/MIG Welding.
- 7. An experiment on shearing operation.
- 8. An experiment on blanking operation.
- 9. An experiment on drawing operation

Semester VI

Control System Engineering

BTMXC601 PCC17 Control system Engineering 3-1-0 4 Credits

Teaching Scheme: Examination Scheme:	Teaching Scheme: Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03
	hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the basic concept of control engineering
CO2	Understand the modelling of linear invariant systems using transfer function and
	state space representations.
CO3	Understand the concept of stability and its assessment for linear time invariant
	systems.
CO4	Design simple feedback controllers
CO5	Represent the system in the state space form for the analysis

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PO12
CO1	2	1	1		1			2				1
CO2	2	2	1		2							
CO3	2	1	1		1			2				1
CO4	3	2	3	1	2							2
CO5	3	1	2		2			3				3

Mapping of course outcomes with program outcomes

Unit 1: Introduction to control problem, Industrial Control examples, Transfer function, System with dead-time, System response, Control hardware and their models, potentiometers, synchro"s,

LVDT, dc and ac servomotors, tacho-generators, electrohydraulic valves, hydraulic servomotors, electro pneumatic valves, pneumatic actuators, closed-loop systems: Block diagram and signal flow graph analysis.

Unit 2: Feedback control systems stability, steady-state accuracy, transient accuracy, disturbance rejection, insensitivity and robustness. proportional, integral and derivative systems. feed-forward and multi-loop control configurations, stability concept, relative stability, Routh stability criterion.

Unit 3: Time response of second-order systems, steady-state errors and error constants, Performance specifications in time-domain, Root locus method of design., Lead and lag compensation.

Unit 4: Frequency-response analysis- Polar plots, Bode plot, stability in frequency domain, Nyquist plots, Nyquist stability criterion, Performance specifications in frequency-domain, Frequency- domain methods of design, Compensation & their realization in time & frequency domain, Lead and Lag compensation, Op-amp based and digital implementation of compensators, Tuning of process controllers, State variable formulation and solution.

Unit 5: State variable Analysis- Concepts of state, state variable, state model, state models for linear continuous time functions, diagonalization of transfer function, solution of state equations, concept of controllability & observability.

Text Books/References:

- 1. Gopal. M., "Control Systems: Principles and Design", Tata McGraw-Hill, 1997.
- 2. Kuo, B.C., "Automatic Control System", Prentice Hall, sixth edition, 1993.
- 3. Ogata, K., "Modern Control Engineering", Prentice Hall, second edition, 1991.
- 4. Nagrath & Gopal, "Modern Control Engineering", New Age International, New Delhi.
- 5. Ambikapathy A., Control System, Khanna Book Publishing Company, 2018.

Design of Machine Elements

BTMXC 602	Design of Machine Elements	3-1-0	4 Credits
-----------	----------------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites:

Course Outcomes: At the end of the course, students will be able to:

CO1	Recognize the stress state (tension, compression, bending, shear, etc.) and calculate
	the value of suesses & strains developed in the components.
CO2	Design of machine elements against static & fluctuating Loads
CO3	Design of components like shaft, key and select the rolling contact bearing for given
005	application
CO4	Select belt drives & chain drives for given power rating
CO5	Design of different types of gears like Spur gears & Helical Gears etc.

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1				1				2
CO2	1	1				1		1		1		1
CO3	2	2	2	1		1		1		1		1
CO4	3	3	2	1		2		1		1		1
CO5	3	3	2	1		2		1		1		1

Mapping of course outcomes with program outcomes

Course Contents:

Unit 1: Simple Stresses and Strains

[07 Hours]

Mechanical properties of materials, analysis of internal forces, simple stresses and strains, stressstrain curve, Hooke"s law, modulus of elasticity, shearing, Hoop stress, Poisson"s ratio, volumetric stress, bulk modulus, shear modulus, relationship between elastic constants. Principal Stresses and Strains: Uni-axial stress, simple shear, general state of stress for 2-D element, ellipse of stress, principal stresses and principal planes, principal strains.

Unit 2: Design of Machine Elements against Static & Fluctuating Loads [07 Hours] Theories of Failure (Yield and Fracture Criteria): Maximum normal stress theory, Maximum shear stress theory, Maximum distortion energy theory, comparison of various theories of failure, Direct loading and combined loading, Design against Fluctuating Loads: Stress concentration, stress concentration factors, fluctuating stresses, fatigue failure, endurance limit, notch sensitivity, approximate estimation of endurance limit, design for finite life and finite life under reversed stresses, cumulative damage in fatigue, Soderberg and Goodman diagrams, fatigue design under combined stresses.

Unit 3: Shafts & Bearings

Various design considerations in transmission shafts, splined shafts, spindle and axles strength, lateral and torsional rigidity, ASME code for designing transmission shaft. Types of Keys: Classification and fitment in keyways, Design of various types of keys.

Rolling Contact Bearings: Types, Static and dynamic load carrying capacities, Equivalent load, load and life relationship, selection of bearing life, Load factor, selection of bearing from manufacturer"s catalogue, Cyclic loads and speeds, Design for probability of survival other than 90% Lubrication and mountings of rolling contact bearings.

Unit 4: Belt and Chain Drives

Flat and V belts, Geometric relationship, analysis of belt tensions, condition for maximum power, Selection of flat and V belts from manufacturer"s catalogue, Adjustment of belt tensions. Roller chains, Geometric relationship, polygonal effect, power rating of roller chain, sprocket wheels, and Silent chains.

Unit 5: Gears

Spur Gear: Terminology of spur gear, Standard system of gear tooth force analysis, gear tooth failures, Selection of materials Constructional, Number of teeth, Face with, Beam strength equation, Effective load on gear tooth, Estimation of module based on beam strength. Design for maximum power capacity, Lubrication of gears.

Helical Gears: Terminology, Virtual number of teeth, Tooth proportions, Force analysis, Beam strength equation, Effective load on gear tooth, Wear strength equation.

Texts:

- 1. S. Ramamrutham, "Strength of Materials", Dhanpat Rai and Sons, New Delhi.
- 2. F. L. Singer, Pytle, "Strength of Materials", Harper Collins Publishers, 2002.
- 3. S. Timoshenko, "Strength of Materials: Part-I (Elementary Theory and Problems)", CBS Publishers, New Delhi.
- 4. V. B. Bhandari, "Design of Machine Elements", Tata McGraw Hill Publications, New Delhi, 2008.
- 5. R. L.Nortan, "Machine Design: An Integrated Approach", Pearson Education Singapore, 2001.

References:

- 1. E. P.Popov, "Introduction to Mechanics of Solid", Prentice Hall, 2nd edition, 2005.
- 2. S. H. Crandall, N. C. Dahl, T. J. Lardner, "An introduction to the Mechanics of Solids", Tata

[07 Hours]

[08 Hours]

McGraw Hill Publications, 1978.

- 3. S. B. Punmia, "Mechanics of Structure", Charotar Publishers, Anand.
- 4. R. C. Juvinall, K. M. Marshek, "Fundamental of machine component design", John Wiley & Sons Inc., New York, 3rd edition, 2002.
- 5. B. J. Hamrock, B. Jacobson and Schmid Sr., "Fundamentals of Machine Elements", International Edition, New York,2nd edition, 1999.
- 6. A. S. Hall, A. R. Holowenko, H. G. Langhlin, "Theory and Problems of Machine Design", Schaum"s Outline Series, Tata McGrawHill book Company, NewYork, 1982.
- 7. J. E. Shigley and C. Mischke, "Mechanical Engineering Design", Tata McGrawHill Publications,7th edition, 2004.
- 8. M. F.Spotts, "Design of Machine Elements", Prentice Hall of India, New Delhi.

Elective III: Intelligent system and Control

BTMXPE603A	Intelligent system and Control	3-0-0	3 Credits

Teaching Scheme: Examination Scheme:	Teaching Scheme: Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03
	hrs)

Pre-requisite:

Course Outcome (CO): On the successful completion of the course the students will be able to

CO1	Develop Neural Networks, Fuzzy Logic, and Genetic algorithms.
CO2	Implement soft computing to solve real-world problems mainly pertaining to
002	control system applications.
CO3	Classify the network as per application
CO4	Understanding of genetic algorithm
CO5	State crisp and fuzzy set

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1			1			1				2
CO2	2	3	1									3
CO3	2	2	1		2			2				3
CO4	3	2		1				1				2
CO5	3	2	1	1				1				2

Unit1: Introduction to Intelligent Control

Introduction and motivation, Approaches to intelligent control, Architecture for intelligent control. Symbolic reasoning system, rule-based systems, the AI approach. Knowledge representation. Expert systems.

Unit 2: Concept of Artificial Neural Networks:

Basic mathematical model, McCulloch-Pitts neuron model, simple perceptron, Adaline and Madaline, Feedforward Multilayer Perceptron. Learning and training the neural network. Data Processing: Scaling, Fourier transformation, principal-component analysis.

Unit 3: Networks:

Hopfield network, Self-organizing network and Recurrent network. Neural Network based controller Case studies: Identification and control of linear and nonlinear dynamic systems using Matlab-Neural Network toolbox. Stability analysis of Neural-Network interconnection systems.

Unit 4: Genetic Algorithm:

Basic concept of Genetic algorithm and detail algorithmic steps, adjustment of free parameters. Solution of typical control problems using genetic algorithm. Concept on some other search techniques like tabu search and ant-colony search techniques for solving optimization problems.

Unit 5: Introduction to crisp sets and fuzzy sets:

Basic fuzzy set operation and approximate reasoning. Introduction to fuzzy logic modeling and control. Fuzzification, inferencing and defuzzification. Fuzzy knowledge and rule bases. Fuzzy modeling and control schemes for nonlinear systems. Fuzzy logic control for nonlinear time-delay system. Implementation of fuzzy logic controller using Matlab fuzzylogic toolbox. Stability analysis of fuzzy control systems.

Text Book(s)

- 1. Simon Haykins, Neural Networks: A comprehensive Foundation, Pearson Edition, 2003.
- 2. T.J. Ross, Fuzzy logic with Fuzzy Applications, Mc Graw Hill Inc, 1997.
- 3. David E Goldberg, Genetic Algorithms.

Reference Books

- 1. M.T. Hagan, H. B. Demuth and M. Beale, Neural Network Design, Indian reprint, 2008.
- 2. Fredric M. Ham and Ivica Kostanic, Principles of Neuro computing for science and Engineering, McGraw Hill, 2001.
- 3. N. K. Bose and P. Liang, Neural Network Fundamentals with Graphs, Algorithms, and Applications, Mc Graw Hill, Inc. 1996.
- 4. Yung C. Shin and Chengying Xu, Intelligent System Modeling, Optimization and Control, CRC Press, 2009.
- 5. N. K. Sinha and Madan M Gupta, Soft computing & Intelligent Systems Theory & Applications, Indian Edition, Elsevier, 2007.
- 6. Witold Pedrycz, Fuzzy Control and Fuzzy Systems, Overseas Press, Indian Edition, 2008.

Elective III: Adoptive and predictive controls in Mechatronic systems

BTMXPE603B	Adoptive and predictive controls in	3-0-0	3 Credits
	Mechatronic systems		

Teaching Scheme: Examination Scheme:	Teaching Scheme: Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03
	hrs)

Pre-Requisite:

Course Outcome: On the successful completion of the course the students will be able to

CO1	Understand the time varying systems
CO2	Learn the principles of predictive controllers
CO3	Use characteristics of Predictive control and its application
CO4	Understand the adaptive control system
CO5	State Self tuning regulators and model reference adaptive systems

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1			1			1				3
CO2	2	2	1									2
CO3	3	2	1		2			1				2
CO4	1	2		1				1				2
CO5	3	2	1	1				1				3

Course Content:

Unit 1: Introduction

Introduction into time-varying systems, Model identification

Unit 2: Introduction of Predictive Control

Basic principles of predictive controllers, Predictive control for linear systems

Unit 3: Characteristics and application of Predictive Control

Stability and robustness of predictive control systems, Predictive control of nonlinear systems

Unit 4: Introduction to Adaptive Control

Development of adaptive control problem-The role of Index performance (IP) in adaptive systems-Development of IP measurement process model.

Unit 5: Self tuning regulators (str) and model reference adaptive systems (mras):

Introduction - Pole placement design-Indirect Self-tuning regulators

- Continuous time Self-Tuners - Direct self tuning regulators - Linear quadratic self - Tuning regulators - Adaptive predictive control. The MIT rule – Determination of Adaptation Gain – Design of MRAS using Liapunov theory – BIBO Stability – Applications to Adaptivecontrol-Model Free Adaptive Control.

Textbook(s)

- 1. Karl J Astrom and Bjorn Wittenmark, "Adaptive Control", Pearson education Inc., New Delhi, Second Edition, 2008.
- 2. J.M. Maciejowski: Predictive Control with Constraints, 2001
- 3. S. Grüne, L. Pannek: Nonlinear Model Predictive Control, 2011

Reference Books

1. Yoan D. Landu - Adaptive Control - Model ReferenceApproach, Marcel Dekker

2. HSU and Meyer - Modern Control. Principles and Applications, McGraw Hill.

Elective III: Virtual Instrumentation

BTMXPE 603C	Virtual Instrumentation	3-0-0	3 Credits

Teaching Scheme: Examination Scheme:	Teaching Scheme: Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03
	hrs)

Pre-Requisite:

Course Outcome (CO): On the successful completion of the course the students will be able to

CO1	Understand Virtual Instrument concepts
CO2	Study the various tools in graphical programming
CO3	Design a Virtual interface using graphical programming
CO4	Develop systems for real-time signal acquisition and analysis
CO5	Implement and design data acquisition systems for practical applications
CO6	Suggest solutions for automation and control applications using virtual instrumentation.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1			1			1				3
CO2	2	2	1									3
CO3	2	1	1		2			1				2
CO4	1	2		1				1				3
CO5	3	1	1	1				1				2

Course Contents:

Unit 1: Introduction to Virtual Instrumentation

Conventional instruments, Virtual Instruments - Architecture, Physical quantities and analog interfaces - hardware and software - user interfaces - advantages of virtual instrumentation over conventional instruments, Graphical programming languages.

Unit 2: Graphical Programming Environment

Concepts of graphical programming – Concept of VIs and sub VIs – Display types – Digital – Analog – Chart – Oscilloscope types.

Unit 3: Graphical Programming Control Structures

Data flow programming - modular programming, Loops – local and global variables - Caseand sequence structures – Types of data – Arrays – Formulate nodes - String and file I/O. LabVIEW: Basic arithmetic operations, Boolean operations.

Unit 4: Cluster of Instruments in Interfacing Systems

Interfacing of external instruments to a PC - RS 232C, RS - 422, RS 485 and USB standards - IEEE 488 standard - introduction to bus protocols of MOD bus and CAN bus, Interfacing the protocols with the virtual environment.

Unit 5: Real Time controller design

Real time controller Designs using Virtual Instrumentation Software - ON/OFF controller –P-I-D controller – Proportional controller – Modeling and basic control of level and reactor processes – Case studies on development of supervisory control in VI

Text Book(s)

1.Sanjay Gupta, Joseph John, Virtual Instrumentation using LabVIEW, Tata McGraw Hill, New Delhi, 2010.

Reference Books

1. Johnson G, Jennings R, LabVIEW Graphical Programming, Tata McGraw Hill, New York, 2006.

2. Jovitha Jerome, Virtual Instrumentation using LabVIEW, PHI Learning Pvt. Ltd, New Delhi, 2010.

Elective IV: Computer Integrated Manufacturing

BTMXPE604A	Computer Integrated Manufacturing	3-0-0	3 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 0 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understanding the CAD, CAM and CIM.
CO2	Learn CAPP and MRP
CO3	Understand the part coding in cellular Manufacturing
CO4	List Flexible Manufacturing System and Automated Guided Vehicle System.
CO5	State industrial robotics

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1			1			1				2
CO2	2	2	1									2
CO3	3	2	1		2			1				2
CO4	2	2		1				1				2
CO5	3	2	1	1				1				3

Course Contents:

Unit 1: Introduction

[07 Hours]

Brief introduction to CAD and CAM; Manufacturing Planning, Manufacturing control Introduction to CAD/CAM; Concurrent Engineering - CIM concepts; Computerized elements of CIM system; Types of production - Manufacturing models and Metrics; Mathematical models of Production Performance; Simple problems; Manufacturing Control; Simple Problems; Basic

Elements of an Automated system; Levels of Automation; Lean Production and Just-In Time Production.

Unit 2: Production Planning and Control and CAPP

Process planning; Computer Aided Process Planning (CAPP); Logical steps in Computer Aided Process Planning; Aggregate Production Planning and the Master Production Schedule; Material Requirement planning; Capacity Planning- Control Systems-Shop Floor Control Inventory Control; Brief on Manufacturing Resource Planning-II (MRP-II) & Enterprise Resource Planning (ERP).

Unit 3: Cellular Manufacturing

[07 Hours] Group Technology (GT), Part Families; Parts Classification and coding; Simple Problems in Opitz Part Coding system; Production flow Analysis; Cellular Manufacturing; Composite part concept; Machine cell design and layout; Quantitative analysis in Cellular Manufacturing; Rank Order Clustering Method - Arranging Machines in a GT cell.

Unit 4: Flexible Manufacturing System (FMS) and Automated Guided Vehicle System (AGVs) [07 Hours]

Types of Flexibility - FMS; FMS Components; FMS Application & Benefits; FMS Planning and Control- Quantitative analysis in FMS; Simple Problems. Automated Guided Vehicle System (AGVS); AGVS Application; Vehicle Guidance technology; Vehicle Management & Safety.

Unit 5: Industrial Robotics

Robot Anatomy and Related Attributes; Classification of Robots- Robot Control systems; End Effectors; Sensors in Robotics; Robot Accuracy and Repeatability - Industrial Robot Applications; Robot Part Programming; Robot Accuracy and Repeatability; Simple Problems.

Texts:

- 1. Mikell.P.Groover "Automation, Production Systems and Computer Integrated Manufacturing", Prentice Hall of India, 2008.
- 2. Radhakrishnan P, Subramanyan S.and Raju V., "CAD/CAM/CIM", 2nd Edition, New Age International (P) Ltd, New Delhi, 2000.

[07 Hours]

Open Elective II: Industrial Engineering

BTMXOE 605A	Industrial Engineering	3-0-0	

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 0 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Prerequisite:

Course Outcome: At the end of the course, students will be able to:

CO1	Understanding the Principles of Industrial Management
CO2	Learn different manufacturing systems.
CO3	Understanding the facilities and logistics in the industry
CO4	Describe the importance of Human Factors, Ergonomics, and Safety
CO5	State different planning tools

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2					2				3
CO2	3	2	1					2				3
CO3	3	2	2			1						2
CO4	3	2	2			2		1			2	3
CO5	3	2	2			2		1			2	3

Course Content:

Unit 1: Introduction

Chronological Developments in IE, Objectives, & Functions of IE, Industrial Management - Principles (e.g., planning, organizing, motivational theory), Tools of management (e.g., MBO, reengineering, organizational structure), Project management (e.g., scheduling, PERT, CPM), Productivity measures,

Unit 2: Manufacturing, Production, and Service Systems

Manufacturing systems (e.g., cellular, group technology, flexible), Process design (e.g., resources, equipment selection, line balancing), Inventory analysis (e.g., EOQ, safety stock), Forecasting,

Scheduling (e.g., sequencing, cycle time, material control), Aggregate planning, Production planning (e.g., JIT, MRP, ERP), Lean enterprises, Automation concepts (e.g., robotics, CIM), Sustainable manufacturing (e.g., energy efficiency, waste reduction), Value engineering

Unit 3: Facilities and Logistics

Flow measurements and analysis (e.g., from/to charts, flow planning), Layouts (e.g., types, distance metrics, planning, evaluation), Location analysis (e.g., single- and multiple-facility location, warehouses), Process capacity analysis (e.g., number of machines and people, trade-offs), Material handling capacity analysis, Supply chain management and design

Unit 4: Human Factors, Ergonomics, and Safety

Hazard identification and risk assessment, Environmental stress assessment (e.g., noise, vibrations, heat), Industrial hygiene, Design for usability (e.g., tasks, tools, displays, controls, user interfaces), Anthropometry, Biomechanics, Cumulative trauma disorders (e.g., low back injuries, carpal tunnel syndrome), Systems safety, Cognitive engineering (e.g., information processing, situation awareness, human error, mental models)

Unit 5: Quality and Systems Engineering Quality

Six sigma, Management and planning tools (e.g., fishbone, Pareto, QFD, TQM), Control charts, Process capability and specifications, Sampling plans, Design of experiments for quality improvement, Reliability engineering

Systems Engineering:Requirement's analysis, System design, Human systems integration, Functional analysis and allocation, Configuration management, Risk management, Verification and assurance, System life-cycle engineering

Text Book(s)

1.*Introduction to Industrial Engineering* by Avraham Shtub, Yuval Cohen, 2nd Edition, 2016, CRC Press, Boca Raton. ISBN: 9781498706018

Reference Books

1.Handbook of Industrial Engineering: Technology and Operations Management, Editor - GavrielSalvendy, Print ISBN:9780471330578, Online ISBN:9780470172339, DOI:10.1002/9780470172339, Copyright © 2001 John Wiley & Sons, Inc.

		Computer Aided Design Lab	1	
BTMXCL 606	PCC19	Computer Aided Design Lab	0-0-2	1 credit

Teaching Scheme	Examination Scheme
Practical 2 hours	Continuous Assessment: 60 Marks
	End Semester Evaluation: 40 Marks

List of Practical's/Experiments

- 1. One Assignment based on drafting of a simple mechanical component using Autocad
- 2. One assignment based on (fully constrained) sketching using any of the CAD software such as CATIA, Creo, NX CAD, Solidworks, etc.
- 3. One assignment based on 3D modelling of simple mechanical components using any of the CAD software such as CATIA, Creo, NX CAD, Solidworks, Fusion 360, 3D experience, etc.

- 4. One assignment based on assembly of components (minimum four components should be available in the assembly) using any of the CAD software such as CATIA, Creo, NX CAD, Solidworks, Fusion 360, 3D experience, etc. (can be given in group of 4 to five students)
- 5. One assignment based on automated drafting of simple mechanical components using any of the CAD software such as CATIA, Creo, NX CAD, Solidworks, Fusion 360, 3D experience, etc. (The component modelled in assignment 3 above can be used for this assignment)

Control System Engineering Lab						
BTMXCL 607	Control System Engineering Lab	0-0-2				

Examination Scheme:
Continuous Assessment: 60 Marks External
Exam: 40 Marks

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	To Develop the mathematical model of the physical systems.
CO2	To Analyze the response of the closed and open loop systems.
CO3	To Analyze the stability of the closed and open loop systems.
CO4	To Design the various kinds of compensator.
CO5	To Develop and analyze state space models.

Mapping of course outcomes with program outcomes

Course Outcomes	Program Outcomes											
Outcomes	РО	PO2	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO12
	1											
CO1												
CO2												
CO3												
CO4												

- 1. Different Toolboxes in MATLAB, Introduction to Control Systems Toolbox or its equivalent open source freeware software like Scilab.
- 2. Determine transpose, inverse values of given matrix.
- 3. Plot the pole-zero configuration in s-plane for the given transfer function.
- 4. Determine the transfer function for a given closed loop system in block diagram representation.
- 5. Plot Module step response of given transfer function and find delay time, rise time, peak time and peak overshoot.
- 6. Determine the time response of the given system subjected to any arbitrary input.
- 7. Plot root locus of given transfer function, locate closed loop poles for different values of k. Also find out Wd and What for a given root.
- 8. Create the state space model of a linear continuous system.
- 9. Determine the State Space representation of the given transfer functions.
- 10. Plot bode plot of given transfer function. Also determine the relative stability by measuring gain and phase margins.
- 11. Determine the steady state errors of a given transfer function.
- 12. Plot Nyquist plot for given transfer function and to discuss closed loop stability. Also determine the relative stability by measuring gain and phase margin.

Text Books/References:

- 1. Gopal. M., "Control Systems: Principles and Design", Tata McGraw-Hill, 1997.
- 2. Kuo, B.C., "Automatic Control System", Prentice Hall, sixth edition, 1993.
- 3. Ogata, K., "Modern Control Engineering", Prentice Hall, second edition, 1991.
- 4. Nagrath & Gopal, "Modern Control Engineering", New Age International, New Delhi.
- 5. Ambikapathy A., Control System, Khanna Book Publishing Company, 2018.

Technical Project for community Services (TPCS)

BTMXP	Technical Project for Community Services	PROJ-5	0L-0T-2P	1 Credits
609	(TPCS)			

Teaching Scheme:	Examination Scheme:
Practical: 2 hrs/week	Continuous Assessment: 60 Marks Mid Semester Exam:
	End Semester Exam: 40 Marks(Duration 03 hrs)

Students are expected to carry out a mini project under a project guide based on the chosen area. The project may be prototype/software based which may demonstrate Engineering application or community service. After completion the project work it is necessary that student should prepare a project report under the supervision of the assign guide and present before the committee.