
Dr. Babasaheb Ambedkar Technological University
(EstablishedasUniversityofTechnologyintheStateofMaharashtra)
(Under Maharashtra Act No. XXIX of 2014)
P.O. Lonere, Dist. Raigad, Pin 402 103,
Maharashtra Telephone and Fax. 02140 - 275142
www.dbatu.ac.in

CURRICULUM UNDER GRADUATE PROGRAMME B. TECH.

2nd Year III & IV Sem. Mechanical Automation Engineering

ACADEMIC YEAR 2023-2024

Abbreviations

BSC: Basic Science Course

ESC: Engineering Science Course

PCC: Professional Core Course

PEC: Professional Elective Course

OEC: Open Elective Course

HSSMC: Humanities and Social Science including Management Courses

PROJ: Project work, seminar and internship in industry or elsewhere

Course Structure for Semester III B. Tech in Mechanical and Automation (w.e.f. 2022-23)

	Semester III									
Course	Course Code	Course Title	Teaching Scheme			Evaluation Scheme				No. of
Category			L	T	P	CA	MSE	ESE	Total	Credits
BSC7	BTBS301	Engineering Mathematics – III	3	1	-	20	20	60	100	4
PCC1	BTMC302	Fluid Mechanics	3	1	-	20	20	60	100	4
PCC2	BTMC303	Thermodynamics	3	1	-	20	20	60	100	4
PCC3	BTMAC304	Manufacturing Engineering	3	1	-	20	20	60	100	4
PCC4	BTMCL305	Machine Drawing and CAD Lab	-	-	4	60	-	40	100	2
PCC5	BTMACL306	Mechanical Automation Engineering Lab	-	-	4	60	-	40	100	2
PROJ-2	BTES209P	IT – 1 Evaluation	-	-	-	-	-	100	100	1
		12	4	8	200	80	420	700	21	

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course

Course Structure for Semester IV
B. Tech in Mechanical and Automation (w.e.f. 2022-23)

HSSMC = Humanities and Social Science including Management Courses BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course HSSMC = Humanities and Social Science including Management Courses

Elective I

Sr. No	Course code	Course Name
1	BTMPE405A	Numerical Methods in Engineering
2	BTMPE405C	Fluid Machinery
3	BTMAPE405B	Electrical Drives and controls

	Semester IV									
8		Teaching Scheme Evaluation Scheme					eme	No of		
Category			L	T	P	CA	MSE	ESE	Tota l	No. of Credits
PCC 6	BTMAC401	Introduction to Automation	3	1	-	20	20	60	100	4

HSSMC3	BTHM403	Basic Human Rights	3		-	20	20	60	100	3
ESC10	BTMES404	Strength of Materials	3	1	-	20	20	60	100	4
PCC7	BTMXC404	Theory of Machines and Mechanisms	3	1	-	20	20	60	100	4
PEC 1	BTMPE405A, BTMPE405C, BTMAPE405B	Elective-I	3	-	-	20	20	60	100	3
PCC8	BTMAL406	Theory of Machines and Mechanisms Lab			2	60		40	100	1
ESC11	BTARL407	Strength of Materials Lab			2	60		40	100	1
PROJ-3	BTMAI409	Field Training /Industrial Training (minimum of 4 weeks which can be completed partially in the third and fourth semester or in one semester itself)	-	-	-	-	-	-	-	Credits to be evaluated in Sem V
	1	Total	15	2	4	220	100	380	700	20

Semester III

Engineering Mathematics-III

BTBS301	Engineering Mathematics-III	BSC 7	3L-1T-0P	4 Credits
---------	-----------------------------	-------	----------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Course Objectives:

After completion of the course, students will have adequate background, conceptual clarity and knowledge of appropriate solution techniques related to:

- 1. Linear differential equations of higher order using analytical methods and numerical methods applicable to Control systems and Networkanalysis.
- 2. Transforms such as Fourier transform, Laplace transform and applications to Communication systems and Signalprocessing.
- 3. Vector differentiation and integration required in Electro-magnetics and Wavetheory.
- 4. Complex functions, conformal mappings, contour integration applicable to Electrostatics, Digital filters, Signal and Image processing.

Course Outcomes:

On completion of the course, students will be able to:

- Solve higher order linear differential equation using appropriate techniques for modeling and analyzing electrical circuits.
- Solve problems related to Fourier transform, Laplace transform and applications to Communication systems and Signal processing.
- Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing.
- Perform vector differentiation and integration, analyze the vector fields and apply to Electromagnetic fields.
- Analyze conformal mappings, transformations and perform contour integration of complex functions in the study of electrostatics and signal processing.

Course Contents:

Unit 1: Laplace Transform

[09 Hours]

Definition – conditions for existence ; Transforms of elementary functions ; Properties of Laplace transforms - Linearity property, first shifting property, second shifting property, transforms of functions multiplied by t^n , scale change property, transforms of functions divided by t, transforms of integral of functions, transforms of derivatives ; Evaluation of integrals by using Laplace transform ; Transforms of some special functions- periodic function, Heaviside-unit step function, Dirac delta function.

Unit 2: Inverse Laplace Transform

[09 Hours]

Introductory remarks ; Inverse transforms of some elementary functions ; General methods of finding inverse transforms ; Partial fraction method and Convolution Theorem for finding inverse Laplace transforms ; Applications to find the solutions of linear differential equations and simultaneous linear differential equations with constant coefficients

Unit 3: Fourier Transform

[09 Hours]

Definitions – integral transforms; Fourier integral theorem (without proof); Fourier sine and cosine integrals; Complex form of Fourier integrals; Fourier sine and cosine transforms; Properties of Fourier transforms; Parseval's identity for Fourier Transforms.

Unit 4: Partial Differential Equations and Their Applications [09 Hours]

Formation of Partial differential equations by eliminating arbitrary constants and functions; Equations solvable by direct integration; Linear equations of first order (Lagrange's linear equations); Method of separation of variables – applications to find solutions of one dimensional heat flow equation $\left(\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}\right)$, and one dimensional wave equation (i.e. $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$).

Unit 5: Functions of Complex Variables [09 Hours]

Analytic functions; Cauchy- Riemann equations in Cartesian and polar forms; Harmonic functions in Cartesian form; Cauchy's integral theorem; Cauchy's integral formula; Residues; Cauchy's residue theorem (All theorems without proofs).

Text Books

- 1. Higher Engineering Mathematics by B. S. Grewal, Khanna Publishers, New Delhi.
- 2. Higher Engineering Mathematics by H. K. Das and Er. Rajnish Verma, S. Chand & CO. Pvt. Ltd., New Delhi.
- 3. A course in Engineering Mathematics (Vol III) by Dr. B. B. Singh, Synergy Knowledgeware, Mumbai.
- 4. Higher Engineering Mathematics by B. V. Ramana, Tata McGraw-Hill Publications, New Delhi.

Reference Books

- 1. Advanced Engineering Mathematics by Erwin Kreyszig, John Wiley & Sons, New York.
- 2. A Text Book of Engineering Mathematics by Peter O' Neil, Thomson Asia Pte Ltd. ,Singapore.
- 3. Advanced Engineering Mathematics by C. R. Wylie & L. C. Barrett, Tata Mcgraw-Hill Publishing Company Ltd., New Delhi.
- 4. Integral Transforms and their Engineering Applications by Dr. B. B. Singh, Synergy Knowledge ware, Mumbai.
 - 5. Integral Transforms by I. N. Sneddon, Tata McGraw-Hill, New York.

General Instructions:

- 1. The tutorial classes in Engineering Mathematics-III are to be conducted batchwise. Each class should be divided into three batches for the purpose.
- 2. The internal assessment of the students for 20 marks will be done based on assignments, surprise tests, quizzes, innovative approach to problem solving and percentage attendance.
- 3. The minimum number of assignments should be eight covering all topics.

Fluid Mechanics

BTMC302 PCC 1 Fluid Mechanics 3-1-0 4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs./week	Continuous Assessment: 20 Marks
Tutorial: 1 hr./week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs.)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

Course Outcomes	Content	Level
CO1	Explain basic properties of fluid, fluid statics, kinematics and dynamics.	Understanding
CO2	Identify various types of flow, flow patterns and their significance.	Understanding
CO3	Explain concepts of flow through pipes, boundary layer theory, forces on immersed bodies and dimensionless parameters.	Understanding
CO4	Derive various equations in fluid mechanics such as Euler's, Bernoulli's, Momentum, Continuity etc.	Apply
CO5	Solve the problems related to properties of fluid, fluid kinematics, fluid dynamics, laminar flow, pipe flow, dimensional analysis, boundary layer theory, and forces on immersed bodies.	Apply

Mapping of course outcomes with program outcomes

Course					Prog	gram	Outco	mes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2											
CO2	2											
CO3	2											
CO4	2											
CO5	3	2										

Course Contents:

Unit 1: Fluid Properties and Fluid Statics:

[07 Hours]

Fluid Properties: Definition of fluid, Fluid as a continuum, Properties of fluid, Viscosity, Types of fluid, Compressibility, Surface tension, Capillarity and vapor pressure.

Fluid Statics: Pascal's law, Hydrostatic law of pressure, Total Pressure, Centre of Pressure, Buoyancy, Meta center, Condition of Equilibrium of floating and submerged bodies (No Numerical Treatment on fluid Statics)

Unit 2: Fluid Kinematics and Dynamics

[07 Hours]

- **A)** Fluid Kinematics: Eulerian and Langragian approach of fluid flow ,Types of flow, Definition of steady, Unsteady, Uniform, Non uniform, Laminar, Turbulent, Compressible, incompressible, rotational, Irrotational flow, 1D-2D flows, Stream line, Streak line, Path line, concept of Velocity, potential & stream function flow net (no numerical treatment),Continuity equation for steady, Unsteady, Uniform, non-uniform, Compressible, incompressible.
- **B)** Fluid Dynamics: Euler's equation, Bernoulli's equation along a streamline for incompressible flow, Practical applications of Bernoulli's equation Pitot tube, Venturi meter, Orifice meter

Unit 3: Laminar Flow and Turbulent Fllow

[07 Hours]

- **A)** Laminar Flow: Introduction to flow of viscous fluid through circular pipes, two parallel plates derivation and numerical.
- **B)** Turbulent Flow: Major and minor losses. Loss of energy due to friction (Darcy's and Chezy's equation). Minor energy losses in transition, expansion and contraction. Concept of HGL and TEL, flow through syphon, flow through pipes in series or compound pipes, equivalent pipe, parallel pipes, branched pipes, Power transmission through pipes. Moody's Diagram.

Unit 4: Forces on Immersed Bodies and Boundary Layer Theory [07 Hours]

- **A)** Forces on Immersed Bodies: Lift and Drag, Drag on a flat plate and on aerofoil. Types of drags, Development of lift. (Magnus effect) stalling condition of aerofoil.
- **B) Boundary Layer Theory:** Boundary layer thickness, its characteristics, laminar and turbulent boundary layers, separation, boundary layer control.

Unit 5: Dimensional analysis

[07Hours]

Introduction to dimensional analysis, dimensional homogeneity, methods of dimensional analysis- Rayleigh's method, Buckingham's π -theorem, dimensionless numbers. (No numerical treatment)

Text Books:

- 1) P. N. Modi, S. M. Seth, "Fluid Mechanics and Hydraulic Machinery", Standard Book House, 10th edition, 1991.
- 2) Robert W. Fox, Alan T. McDonald, "Introduction to Fluid Mechanics", John Wile and Sons,5thedition.
- 3) Fluid mechanics and Hydraulic machines, Dr. R. K. Bansal , Laxmi Publication, Delhi, 2005

References Books:

- 1) V. L. Streeter, K. W. Bedford and E. B. Wylie, "Fluid Dynamics", Tata McGraw-Hill,9thedition, 1998.
- S. K. Som, G.Biswas, "Introduction to Fluid Mechanics and Fluid Machines", Tata McGrawHill, 2ndedition, 2003

Thermodynamics

BTMC303 PCC2	Thermodynamics	3-1-0	4 Credits
--------------	----------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Define the terms like system, boundary, properties, equilibrium, work, heat, ideal					
COI	gas, entropy etc. used in thermodynamics.					
CO2	Studied different laws of thermodynamics and apply these to simple thermal					
CO2	systems to study energy balance.					
CO3	Studied Entropy, application and disorder.					
CO4	Studied various types of processes like isothermal, adiabatic, etc. considering system					
C04	with ideal gas and represent them on p-v and T-s planes.					
CO5	Represent phase diagram of pure substance (steam) on different thermodynamic					

planes like p-v, T-s, h-s, etc. Show various constant property lines on them.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1										
CO2	1	2	1									
CO3		1	1									
CO4	2											
CO5	1	1										

Course Contents:

Unit 1: Fundamental Concepts and Definitions [07 Hours]

Thermodynamic system and its type; Macroscopic vs. Microscopic viewpoint, properties, processes and cycles, point function, path function. Thermodynamic equilibrium, Quasi-static process.

Work and heat Transfer: Work transferred and other types of work, Heat transfer, temperature and its measurement (principle of measurement, various instruments etc.). Zeroth law of thermodynamics, specific heat and latent heat, relationship between C_P and C_V .

Unit 2: First Law of Thermodynamics[07 Hours]

First law of thermodynamics for a closed system undergoing a cycle and change of state, Energy, different forms of energy, Enthalpy, PMM-I control volume.

Application of first law of steady flow processes (nozzle, turbine, compressor,pump, boiler, throttle valve etc.)

Unit 3: Second Law of Thermodynamics[07 Hours]

Limitation of first law of thermodynamics, cycle heat engine, refrigerator and heat pump, Kelvin- Plank and Clausius statements and their equivalence, Reversibility and Irreversibility, Carnot cycle, Carnot theorem, Absolute thermodynamic temperature scale.

Entropy: Introduction, Clausius theorem, T-s plot, Clausius inequality, Entropy and Irreversibility, Entropy principle and its application, combined I and II law, Entropy and direction, Entropy and disorder.

Unit 4: Ideal gas [07 Hours]

Boyle's law, Charl's law, Avogadro's law, universal gas constant, ideal processes with equestion, other equation of states.

Unit 5:Properties of Pure Substance

[07Hours]

Phase change phenomenon of pure substance, phase diagram of pure substance, p-v, T-s, and h-s diagrams properties of steam, critical point parameters, triple point, property table, representation of processes of steam on p-v, T-s, and other diagrams, Dryness fraction and its measurement.

Texts:

- 1. P.K.Nag, "Engineering Thermodynamics", Tata McGraw Hill, New Delhi, $3^{\rm rd}$ edition, 2005.
- 2. Y. A.Cengel, M. A. Boles, "Thermodynamics An Engineering Approach", Tata McGraw Hill, 5thedition, 2006.

References:

- 1. G. J. VanWylen, R. E. Sonntag, "Fundamental of Thermodynamics", John Wiley and Sons, 5thedition, 1998.
- 2. J. Moran, H. N. Shaprio, "Fundamentals of Engineering Thermodynamics", John Wiley and Sons, 4th edition, 2004.

BTMAC304 Manufacturing Engineering

BTMAC304	PCC3	Manufacturing Engineering	3-1-0	4 Credits

Examination Scheme:
ntinuous Assessment: 20 Marks Mid Semester Exam: 20 Marks nd Semester Exam: 60 Marks(Duration 03 hrs)
/

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	CO1: Identify castings processes, working principles and applications and list various defects in metal casting
CO2	CO2 :Understand the various metal forming processes, working principles and applications
CO3	CO3 :Classify the basic joining processes and demonstrate principles of these processes
CO4	CO4: Study centre lathe and its operations including plain, taper turning, work holding devices and cutting tool.
CO5	CO5: Understand milling machines and operations, cutters and indexing for gear cutting.

Mapping of course outcomes with program outcomes

Course						Progra	m Out	comes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1									
CO2	3	2	2	3	2							
CO3	2	1	2	1	1							
CO4	1	2	2	1	2	1	2	1	1	1		
CO5	1	1	1	3	2		1		1			
CO6	1	1	2	2	2	1	2		1	1		

Course Contents:

Unit 1: Introduction and Casting Processes: [08]

Introduction to casting; sand casting, solidification of metals: Pure metals, Alloys; Solidification time, special casting processes: shell moulding, investment casting; Permanent-mold casting, vacuum casting, die casting, centrifugal casting, casting defects, Inspection and Testing, NDT methods,

Unit 2: Metal Forming: [08]

Hot and Cold Working of Metals: Principles of rolling, forging, drop, press, upset, roll forging, extrusion, drawing, spinning, and effect of hot working. Cold working processes, Cold rolling, swaging, forging, extrusion- forward, backward and impact roll forming, tube drawing, wire drawing, shot penning.

Unit 3: Joining Processes: [08]

Arc welding- Theory, SMAW, GTAW, GMAW, FCAW, Submerged arc welding, Stud welding, Resistance welding- Theory, spot and seam projection welding processes. Gas welding, Friction, welding, Ultrasonic welding, Thermit welding, EBW and LASER welding. Soldering, brazing and adhesive bonding, Welding defects and quality.

Unit 4: Machining Processes: Turning and Hole Making: [08]

Introduction; the Turning Process; Lathes and Lathe Operations: Lathe Components, Work holding Devices and Accessories, Lathe Operations, Types of Lathes. Types of chips, Boring and Boring Machines; Drilling Machines: Drills, Drill Materials and Sizes, Drilling Practice, Drilling, Machines, Reaming operation and Reamers.

Unit 5: Machining Processes: Milling, Broaching and Gear Manufacturing: [08]

Introduction, Milling and Milling Machines: Peripheral Milling, Face Milling, End Milling, Other Milling Operations and Milling Cutters, Tool holders, Milling Process Capabilities, Milling Machines; Planning and Shaping; Broaching and Broaching Machines; Gear Manufacturing by Machining: Form Cutting, Gear Generating, Cutting Bevel Gears, Gearfinishing Processes, CNC ,VMC .

Text:

- 1. Serope Kalpakjian and Steven R. Schmid, "Manufacturing Engineering and Technology", Addison Wesley Longman (Singapore) Pte. India Ltd., 6thedition, 2009
- 2. S. K. Hajra Choudhary and S.K. Bose, _Elements of workshop Technology_ Volume I, II,Asia Publishing House, 10th Edition 2000.
- 3. P. N. Rao, _Manufacturing Technology_, Tata McGraw-Hill Publishing Limited, 2 nd Edition,2002.

Machine Drawing and CAD Lab

BTMCL305 PCC3	Machine Drawing and CAD	0-0-4	2 Credits
---------------	-------------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Practical: 4 hrs/week	Continuous Assessment: 60 Marks
	External Exam: 40 Marks

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Interpret the object with the help of given sectional and orthographic views.
CO2	Construct the curve of intersection of two solids
CO3	Draw machine element using keys, cotter, knuckle, bolted and welded joint
CO4	Assemble details of any given part. i. e. valve, pump, machine tool part etc.
CO5	Represent tolerances and level of surface finish on production drawings
CO6	Understand various creating and editing commands in Auto Cad

Mapping of course outcomes with program outcomes

Course Outcomes	Program Outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2								3	2		1
CO2	2	1							2	1		1
CO3	2								2	1		
CO4	2	2			1				2	1		1
CO5	1	1			1				2	1		1
CO6	1	1			1				2	2		1

List of Practical's/ Experiments/ Assignments (minimum six assignments should be completed)

- 1. One full imperial drawing sheet consisting the drawing/sketches of representation of standard components, symbols of pipe joints, weld joints, rivet joint etc., surface finish symbols and grades, limit, fit and tolerance sketches.
- 2. Two full imperial drawing sheets, one consisting of assembly and the other consisting of details of any one standard component such as valves, components of various machine tools, pumps, joints, engine parts, etc.
- 3. Two assignment of AutoCAD: Orthographic Projections of any one simple machine component such as bracket, Bearing Housing or Cast component for Engineers such as connecting rod, Piston, etc.; with dimensioning and detailing of three views of components.
- 4. 3-D model at least one simple machine component.

Texts:

- 1. N. D. Bhatt, "Engineering Drawing", Charotar Publishing House, Anand, India.
- 2. N. D. Bhatt, "Machine Drawing", Charotar Publishing House, Anand, India.

- 3. Ajeet Sing, "Working with AutoCAD 2000", Tata McGraw Hill, New Delhi.
- 4. George Omura, "ABC of AutoLISP", BPB Publications, New Delhi.

References:

- 1. Narayana, Kannaiah, Reddy, "Machine Drawing", New Age International Publishers.
- 2. AutoCAD and AutoLISPmanuals from Autodesk Corp. U.S.A.
- 3. ISCode: SP46-1988, Standard Drawing Practices for Engineering Institutes.

Mechanical Engineering Lab - I

BTMCL306	PCC4	Fluid Mechanics + Material Science and Metallurgy	0-0-4	2 Credit
----------	------	--	-------	----------

Practical Scheme:	Examination Scheme:
Practical: 4 hrs/batch	Continuous Assessment: 60 Marks
	External Exam: 40 Marks

Group A (Fluid Mechanics)

List of Practicals/Experiments/Assignments (Any Five from Group A)

- 1. Flow visualization technique: characteristics of laminar and turbulent flow patterns using Helleshaw Apparatus.
- 2. Verification of Bernoulli's theorem
- 3. Determination of Critical Reynolds number using Reynolds Apparatus
- 4. Determination of pressure drop in pipes of various cross-sections
- 5. Determination of pressure drops in pipes of various pipe fittings etc.
- 6. Viscosity measurement using viscometer(at least one type)
- 7. Verification of momentum equation using impact of jet apparatus
- 8. Determination of metacentric height of a floating body
- 9. Calibration of a selected flow measuring device and Bourdon pressure gauge
- 10. Gauge and differential pressure measurements using various types of manometers, Bourdon type pressure gauge.
- 11. Demonstration of measurement using these instruments Lab.
- 12. Experiment to study hydraulic jump.

Group B (Manufacturing Engineering Lab)

List of Practicals/Experiments/Assignments (Any Four from Group B)

- 1. Making a job with a process plan involving plain, step and taper turning as well thread cutting asoperations on a Centre lathe.
- 2. Preparation of process planning sheet for a job including operations such as milling, drillingand shaping.
- 3. Making a spur gear using universal dividing head on milling machine.

- 4. Making a simple component by sand casting using a split pattern.
- 5. Cutting of a steel plate using oxyacetylene flame cutting /plasma cutting.
- 6. Making a butt joint on two stainless steel plates using TIG/MIG Welding.
- 7. An experiment on shearing operation.
- 8. An experiment on blanking operation.
- 9. An experiment on drawing operation

IT – 1 Evaluation

BTES209P	Internship – 1 Evaluation	PROJ-2	OL-OT-OF	1 Credits	
(Internship - 1)					

Teaching Scheme:	Examination Scheme:
Lecture:	Continuous Assessment:
	Mid Semester Exam:
	End Semester Exam: 100 Marks

Semester IV

Introduction to Automation

BTMAC401 PCC	Introduction to Automation	3-0-0	3 Credits
--------------	----------------------------	-------	-----------

Pre-Requisites: None

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand and learn about fundamentals of automation systems.
CO2	Understand and learn Architecture of Automation Systems
CO3	Understand and learn sensing and auction of automation systems
CO4	Understand and learn advanced tolls used in automation systems
CO5	

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												

CO5						
CO6						

Course Contents:

Unit 1: Introduction

[07 Hours]

Definition, history, need and scope for automation, Industrial Automation vs. Industrial Information Technology, Role of automation in industry, Economy of Scale and Economy of Scope, Types of production systems, Types of Automation Systems, Automation Strategies, Components of an industrial automation system, Effects of industrial automation on people, society and environment.

Unit 2: Architecture of Automation Systems

[07 Hours]

The Functional Elements of Industrial Automation, Sensing and Actuation Elements, Industrial Sensors and Instrument Systems, the Architecture of Elements: The Automation Pyramid.

Unit 3: Actuation and Control systems

[07Hours]

Fundamentals of pneumatics and Hydraulics,

Industrial Actuator Systems, Industrial Control Systems, Continuous Control, Sequence / Logic Control, Supervisory Control, Production Control.

Unit 4: Introduction to Process Control

[07 Hours]

Introduction, Characteristics of a Process, General Modeling Principles, Mathematical Modeling procedure, some modelling examples. Feedback and feed forward control.

Unit 5: Advanced Automation systems & Tools [07 Hours]

IOT, Expert system, P L C Scada, Artificial Intelligence, Machine learning, machine vision.

Text Book:

- 1. F. Ebel, S. Idler, G. Prede, D. ScholzFundamentals of automation technology (Technical Book) FESTO, Reinhard Pittschellis, Edition:1/2008.
- 2. Ravindra Sharma, Advanced Industrial Automation And Its Applications, Laxmi Publications, first edition
- 3. A.K. Gupta, S.K. Arora, Industrial Robotics and Automation, University Science Press.
- 4. Groover, Mikell P, Automation, production systems, and computer-integrated manufacturing Publisher: Pearson, Year: 2014;2019
- 5. Khushdeep Goyal, Industrial Automation & Robotics, Publishe S. K. Kataria
- 6. Qusay F. Hassan, Internet of Things A to Z: Technologies and Applications, IEEE Press, Wiley pub.

References Book:

- a. Richard L. Shell, Ernest L. Hall, Handbook Of Industrial Automation, CRC Press, 2000
- b. Kok Kiong Tan, Andi Sudjana Putra, Drives and Control for Industrial Automation, Publisher Springer London, first edition.
- c. Manesis, Introduction to Industrial Automation, CRC Press,2018.

Basic Human Rights

BTHM403 HSSMC3	Basic Human Rights	3-0-0	3 Credits
----------------	--------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Audit Course

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the history of human rights.				
CO2	Learn to respect others caste, religion, region and culture.				
CO3	Be aware of their rights as Indian citizen.				
CO4	Understand the importance of groups and communities in the society.				
CO5	Realize the philosophical and cultural basis and historical perspectives of human				
rights.					
CO6	Make them aware of their responsibilities towards the nation.				

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						2						
CO2												
CO3												
CO4									3			
CO5								2		2		
CO6												1

Course Contents:

Unit 1: The Basic Concepts, Fundamental Rights and Economic Program [07 Hours]

Individual, group, civil society, state, equality, justice. Human Values, Human rights and Human Duties. Declaration of independence, Rights of citizen, Rights of working and exploited people Society, religion, culture, and their inter-relationship. Impact of social structure on human behavior.

Social Problems: Social and communal conflicts and social harmony, rural poverty,

unemployment, bonded labour.

Unit 2: Workers and Human Rights

[07 Hours]

Migrant workers and human rights violations, human rights of mentally and physically challenged. State, Individual liberty, Freedom and democracy.

Unit 3: NGOs and Human Rights in India

[07 Hours]

Land, Water, Forest issues.

Unit 4: Human Rights in Indian Constitution and Law

[07 Hours]

- i) The constitution of India: Preamble
- ii) Fundamental rights.
- iii) Directive principles of state policy.
- iv) Fundamental duties.
- v) Some other provisions.

Unit 5: UDHR and Indian Constitution

[07 Hours]

Universal declaration of human rights and provisions of India; Constitution and law; National human rights commission and state human rights commission.

References:

- 1. Shastry, T. S. N., "India and Human Rights: Reflections", Concept Publishing Company India (P Ltd.), 2005.
- 2. C. J. Nirmal, "Human Rights in India: Historical, Social and Political Perspectives (Law in India)", Oxford India.

Strength of Materials

BTMES404	ESC11	Strength of Materials	3-1-0	4 Credits
----------	-------	-----------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: Engineering Mechanics

Course Outcomes: At the end of the course, students will be able to:

CO1	State the basic definitions of fundamental terms such as axial load, eccentric load,	
COI	stress, strain, E, μ, principle stresses, etc.	
CO2	Analyze the stresses and strain energy in different load cases	
CO3	Design the columns based on deflection	

CO4	Design a beam based on bending and shafts based on torsion			
CO5	Analyze given beam for calculations of SF and BM			
CO6	Calculate slope and deflection at a point on cantilever /simply supported beam using double integration, Macaulay's, Area-moment and superposition methods			

Mapping of course outcomes with program outcomes

Course	Prog	Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1				1				2
CO2	1	1	2	2								2
CO3	1	1	2	2		1						3
CO4	1	3	2	1								2
CO5	1	1	2	3								2

Course Contents:

Unit 1: Simple Stresses and Strains

[07 Hours]

Mechanical properties of materials, analysis of internal forces, simple stresses and strains, stress-strain curve, Hooke's law, modulus of elasticity, shearing, thermal stress, Hoop stress, Poisson's ratio, volumetric stress, bulk modulus, shear modulus, relationship between elastic constants.

Principal Stresses and Strains

Uni-axial stress, simple shear, general state of stress for 2-D element, ellipse of stress, principal stresses and principal planes, principal strains, shear strains, strain rosettes.

Unit 2: Strain energy, resilience and Combined Stresses

Strain energy, resilience: Load-deflection diagram, strain energy, proof resilience, stresses due to gradual, sudden and impact loadings, shear resilience, Combined axial and flexural loads, middle third rule, kernel of a section, eccentrically applied load.

Columns and Struts: Concept of short and long Columns, Euler and Rankine's formulae, limitation of Euler's formula, equivalent length, eccentrically loaded short compression members.

Unit 3: Stresses in Beams

[10 **Hours**]

Moment of inertia of different sections, bending and shearing stresses in a beam, theory of simple bending, derivation of flexural formula, economic sections, horizontal and vertical shear stress, distribution shear stress for different geometrical sections-rectangular, solid circular, I-section, other sections design for flexure and shear.

Torsion

Introduction and assumptions, derivation of torsion formula, torsion of circular shafts, stresses and deformation indeterminate solid/homogeneous/composite shafts, torsional strain energy.

Unit 4: Shear Force and Bending Moment Diagram

[10 Hours]

Introduction to different types of beams, different types of supports & loads. Concept and definition of shear force and bending moment in determinant beams due to concentrated loads, UDL, UVL and couple. Relation between SF, BM and intensity of loading, construction of shear force and bending moment diagram for cantilever, simple and compound beams, defining critical and maximum value and position of point of contra flexure. Construction of BMD and **load** diagram from SFD, Construction of load diagram and SFD from BMD.

Unit 5. Deflection of beams

[08 Hours]

Differential equation of deflected beam, slope and deflection at a point, calculations of deflection for determinate beams by double integration, Macaulay's method, theorem of areamoment method (Mohr's theorems), moment diagram by parts, deflection of cantilever beams, deflection in simple supported beams, mid-span deflection, conjugate beam method, deflection by method of superstition.

Texts:

- S. Ramamrutham, "Strength of Materials", Dhanpat Rai and Sons, New Delhi.
- F. L. Singer, Pytle, "Strength of Materials", Harper Collins Publishers, 2002.
- S. Timoshenko, "Strength of Materials: Part-I (Elementary Theory and Problems)", CBS Publishers, New Delhi.

References:

- E. P.Popov, "Introduction to Mechanics of Solid", Prentice Hall, 2nd edition, 2005.
- S. H. Crandall, N. C. Dahl, T. J. Lardner, "An introduction to the Mechanics of Solids", Tata McGraw Hill Publications, 1978.
- S. B. Punmia, "Mechanics of Structure", Charotar Publishers, Anand.

Theory of Machines and Mechanisms

BTMXC404	PCC 6	Theory of Machines and Mechanisms	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1

CO2	
CO3	
CO4	
CO5	
CO6	

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												
CO6												

Course Contents:

Unit I: Classification of mechanisms- Basic kinematic concepts and definitionsDegree of freedom, mobility- Grashof's law, Kinematic inversions of four bar chain and slider crank chains- Limit positions- Mechanical advantage- Transmission angleDescription of some common mechanisms- Quick return mechanism, straight line generators- Universal Joint- Rocker mechanisms.

Unit II: Displacement, velocity and acceleration analysis of simple mechanisms, graphical velocity analysis using instantaneous centres, velocity and acceleration analysis using loop closure equations- kinematic analysis of simple mechanisms- slider crank mechanism dynamics.

Unit III: Coincident points- Coriolis component of acceleration- introduction to linkage synthesis- three position graphical synthesis for motion and path generation.

Unit IV: Classification of cams and followers- Terminology and definitionsDisplacement diagrams- Uniform velocity, parabolic, simple harmonic and cycloidal motions-derivatives of follower motions- specified contour cams- circular and tangent camspressure angle and undercutting, sizing of cams, graphical and analytical disc cam profile synthesis for roller and flat face followers. Involute and cycloidal gear profiles, gear parameters, fundamental law of gearing and conjugate action, spur gear contact ratio and interference/undercutting- helical, bevel, worm, rack & pinion gears, epicyclic and regular gear train kinematics.

Unit V: Surface contacts- sliding and rolling friction- friction drives- bearings and lubrication- friction clutches- belt and rope drives- friction in brakes.

Text Books:

- 1. Thomas Bevan, Theory of Machines, 3rdedition, CBS Publishers & Distributors, 2005.
- 2. Cleghorn W.L., Mechanisms of Machines, Oxford University Press, 2005.
- 3. Robert L. Norton, Kinematics and Dynamics of Machinery, Tata McGrawHill,2009.
- 4. Ghosh A. and Mallick A.K., Theory of Mechanisms and Machines, Affiliated East-West Pvt. Ltd, New Delhi

Numerical Methods in Mechanical Engineering

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Course Outcomes: At the end of the course, students will be able to:

CO1	Describe the concept of error
CO2	Illustrate the concept of various Numerical Techniques
CO3	Evaluate the given Engineering problem using the suitable Numerical Technique
CO4	Develop the computer programming based on the Numerical Techniques

Mapping of course outcomes with program outcomes

Tr 8												
Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3		1	3							
CO2	3	3		1	3							
CO3	3	3		1	3							
CO4	3	3		1	3							

Course Contents:

Unit1: ErrorAnalysis [07 Hours]

Significant figures, round-off, precision and accuracy, approximate and true error, truncationerror and Taylor series, machine epsilon, data uncertainties, error propagation, importance of error sincomputer programming.

Unit2: Roots of Equations [07 Hours]

Motivation, Bracketing methods: Bisection methods, Open methods: Newton Raphson method, Engineering applications.

Unit3: NumericalSolutionofAlgebraicEquations [07 Hours]

Motivation, Cramer'srule, Gauss-Elimination Method, pivoting, scaling, engineering applications.

Unit4: NumericalIntegrationandDifferentiation

[07 Hours]

Motivation, Newton's

 $Cotes Integration Formulas: Trapezoidal Rule, Simpson's rule, engineering applications \\Numerical differentiation using Finite divide Difference method$

Unit5: Curve, Fitting and Interpolation and Computer Programming [07 Hours]

Motivation, Least Square Regression: Linear Regression, Polynomial regression.

Interpolation: Newton's Divide Difference interpolation, engineering applications.

SolutiontoOrdinaryDifferentiation

Equations: Motivation, Euler's and Modified Euler's Method, Heun's method, Runge-

KuttaMethod,engineeringapplications.

ComputerProgramming

Overviewofprogramming language, Development of at least one computer program based on each unit.

Texts:

- 1. StevenCChapra, ReymondP. Canale, "Numerical Methods for Engineers", Tata McGraw Hill Publications, 2010.
- 2. E.Balagurusamy, "NumericalMethods", TataMcGraw HillPublications, 1999.

References:

- 1. V. Rajaraman, "FundamentalofComputers", PrenticeHallofIndia, NewDelhi, 2003.
- 2. S. Sastri, "IntroductoryMethodsofNumericalMethods", PrenticeHallofIndia, NewDelhi, 3rdedition, 2003.
- 3. K. E. Atkinson, "AnIntroductionto NumericalAnalysis", Wiley, 1978.
- 4. M.J. Maron, "Numerical Analysis: A Practical Approach", Macmillan, New York, 1982

Electrical Drives and Control

Electrical Drives and Control

3-0-0

End Semester Exam: 60 Marks (Duration 03 hrs)

3 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks

Pre-Requisites: None

BTMAPE405B

PEC 1

Course Outcomes: At the end of the course, students will be able to:

CO1	Recognize common manufacturing processes of Sheet Metal Fabrication
CO2	Understand the principles of design and fabricate of sheet metal products and recognize
CO2	common material used in the industry
CO3	Distinguish Shearing, Drawing and Pressing etc. processes.
CO4	Know types of dies and formability.
CO5	Select mechanical or hydraulic presses for the given process

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Course Contents:

Unit1: Introduction [07 Hours]

Basic Elements – Advantages of Electrical Drives Types of Electric Drives – factors influencing the choice of electrical drives, heating and cooling curves – Loading conditions and classes of duty – Selection of power rating for drive motors with regard to thermal overloading and Load variation factors.

Unit2: Drive motor characteristics

[07 Hours]

Mechanical characteristics – Speed-Torque characteristics of various types of load and drive motors – Braking of Electrical motors – DC motors: Shunt, series and compound - single phase and three phase induction motors..

Unit3: Starting methods

[07 Hours]

Types of D.C Motor starters – Typical control circuits for shunt and series motors – Three phase squirrel cage and slip ring induction motors.

Unit4: Conventional and solid state speed control of D.C. Drives.

[07 Hours]

Speed control of DC series and shunt motors – Armature and field control, Ward-Leonard control system - Using controlled rectifiers and DC choppers –applications

Unit 5: Conventional and solid state speed control of A.C. Drives.

[07 Hours]

Speed control of three phase induction motor – Voltage control, voltage / frequency control, slip power recovery scheme – Using inverters and AC voltage regulators – applications

Texts:

- 1. B.R. Gupta, V. Singhal, Fundamentals Of Electric Drives And Control, Publisher : S.K. Kataria & Sons; Reprint 2013 edition
- 2. U.A.Bakshi, M.V.Bakshi Electrical Drives And Control, Technical Publications, Pune
- 3. Dr. N.Dhanasekar, Electrical Drives and Controls, ARS Publications

References:

- 1. Pillai.S.K "A First Course on Electric Drives", Wiley Eastern Limited, 1998
- 2. Singh. M.D., K.B.Khanchandani, "Power Electronics", Tata McGraw-Hill, 1998

3. Partab. H., "Art and Science and Utilisation of Electrical Energy", Dhanpat Rai and Sons,

Fluid Machinery

BTMPE405C PEC 1	Fluid Machinery	3-1-0	4 Credits
-----------------	-----------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand and apply momentum equation
CO2	Understand and explain Hydrodynamic Machines
CO3	Explain difference between impulse and reaction turbines
CO4	Find efficiencies, draw velocity triangles
CO5	Explain governing mechanisms for hydraulic turbines
CO6	Explain working of various types of pumps, draw velocity diagrams, do simple
C00	calculations
CO7	Design simple pumping systems

Mapping of course outcomes with program outcomes

Course						Progr	am Ou	itcome	es			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1									1
CO2	3		3				2					1
CO3	3	2										1
CO4	3	3	2									1
CO5			3									1
CO6	3	3	3	1	1							1
CO7	3	3		3								1

Course Contents:

Unit 1: Momentum Equation and its Applications

[07 Hours]

Impulse momentum, Principle, Fixed and moving flat inclined plates, Curved vanes, Series of plates and vanes, Velocity triangle and their analysis, Water wheels. Hydrodynamic Machines: Classification, General theory, Centrifugal head, Fundamental equations, and Euler's equation, Degree of reaction, Head on machine, various efficiencies, Condition for maximum hydraulic efficiency.

Unit 2: Impulse and Reaction Turbines

[07 Hours]

Impulse principle, Construction of Pelton wheel, Velocity diagrams and its analysis, Number of buckets, Jets, Speed ratio, Jet ratio.

Reaction Turbines: Constructional details of Francis, Kaplan and Propeller turbine, Deciaz turbine, and Draft tube types, Efficiencies, Cavitation.

Unit 3: Governing of Turbines

[07 Hours]

Methods of governing, Performance characteristics, Safety devices, Selection of turbines, Unit quantities, Specific speed, Principles of similarity and model testing.

Unit 4: Centrifugal Pump

[07 Hours]

Construction, Classification, Terminology related to pumps, Velocity triangle and their analysis, Cavitation, NPSH, Thoma's cavitation factor, Priming, Methods of priming, Specific speed, Performance characteristics, Actual thrust and its compensation, Troubleshooting.

Multistage Pumps: Pump H-Q characteristics and system H-Q Characteristics, Series and parallel operation of pumps, Systems in series and parallel, Principle of model testing and similarity.

Unit 5: Special Purpose Pumps

[07 Hours]

Chemical pumps, nuclear pumps, Sewage pumps, Submersible deep well pumps, Pump installation, Energy efficient pumps.

Failure of Pumping System: Pump failures, Remedies, Source failure, Causes and remedies, Trouble shooting.

Miscellaneous Pumps: Reciprocating pump, Gear pump, Vane pump, Lobe pump, etc., Application field (no mathematical treatment).

Texts:

- 1. P. N. Modi, S. M. Seth, "Hydraulics and Fluid Mechanics including Hydraulic Machines", Standard Book House, Rajsons Publications Pvt. Ltd., 20th edition.
- 2. R. K. Bansal, "A Text Book of Fluid Mechanics and Hydraulic Machines", Lakshmi Publications Pvt. Ltd., 9th edition.

References:

1. Yunus A. Çengel, John M. Cimbala, Fluid Mechanics: Fundamentals and Applications", McGraw Hill, 3rd edition, 2014.

Theory of Machines and Mechanism Lab

BTMCL406	PCC7	Theory of Machines and Mechanisms Lab	0-0-2	1 Credit
----------	------	--	-------	----------

2.

Practical Scheme:	Examination Scheme:
Practical: 4 hrs/batch	Continuous Assessment: 60 Marks
	External Exam: 40 Marks

- 1. To supplement the principles learnt in kinematics and Dynamics of Machinery.
- 2. To understand how certain measuring devices are used for dynamic testing.

3. LIST OF EXPERIMENTS:

- 4. **Perform any eight experiments of the following:**
- 5. 1. Study of inversions of mechanism
- 6. 2. One sheet on velocity analysis by relative velocity method
- 7. 3. One sheet on acceleration analysis
- 8. 4. One sheet on cam profiles
- 9. 5. One sheet on balancing of rotating masses
- 10. 6. One sheet on balancing of reciprocating inline engines
- 11. 7. Study of generation of involute tooth profile
- 12. 8. Study of interference and undercutting
- 13. 9. Study of governor
- 14. 10. Study of motorized gyroscope.
- 15. 11. Study of undammed free vibrations of spring mass system-Determination of stiffness of the spring
- 16. 12. To find radius of gyration of compound pendulum
- 17. 13. Study of differential gear rain
- 18. 14. Study of dynamometers

Strength of Materials Lab II

BTARL407 ESC12 Strength of Materials Lab 0-0-2 1 Credit

Practical Scheme:	Examination Scheme:
Practical: 2 hrs/batch	Continuous Assessment: 60 Marks
	External Exam: 40 Marks

List of Practicals/Experiments (Any Eight)

- 1. Tension test on ferrous and non-ferrous alloys (mid steel/cast iron/aluminum, etc.
- 2. Compression test on mild steel, aluminum, concrete, and wood
- 3. Shear test on mild steel and aluminum (single and double shear tests)
- 4. Torsion test on mild steel and cast iron solid bars and pipes
- 5. Flexure test on timber and cast iron beams
- 6. Deflection test on mild steel and wooden beam specimens
- 7. Graphical solution method for principal stress problems
- 8. Impact test on mild steel, brass, aluminum, and cast iron specimens
- 9. Experiments on thermal stresses
- 10. Strain measurement in stress analysis by photo-elasticity

- 11. Strain measurement involving strain gauges/ rosettes
- 12. Assignment involving computer programming for simple problems of stress, strain Computations.