
Dr. Babasaheb Ambedkar Technological University
(Established as University of Technology in the State of
Maharashtra) (Under Maharashtra Act No. XXIX of 2014)
P.O. Lonere, Dist. Raigad, Pin 402 103,
Maharashtra Telephone and Fax. 02140 - 275142
www.dbatu.ac.in

CURRICULUM UNDER GRADUATE PROGRAMME B.TECH.

2nd and 3rd Year MECHANICAL ENGINEERING/MECHANICAL ENGINEERING(SANDWICH) ACADEMIC YEAR 2023-2024

Abbreviations

BSC: Basic Science Course

ESC: Engineering Science Course

PCC: Professional Core Course

PEC: Professional Elective Course

OEC: Open Elective Course

HSSMC: Humanities and Social Science including Management Courses

PROJ: Project work, seminar and internship in industry or elsewhere

Course Structure for Semester III

B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) (2022-23)

	Semester III									
Course	Course Code	Course Title	Teacl	hing Scl	heme	Ev	valuatio	on Sch	eme	No. of
Category			L	T	P	CA	MSE	ESE	Total	Credits
BSC7	BTBS301	Engineering Mathematics – III	3	1	-	20	20	60	100	4
PCC1	BTMC302	Fluid Mechanics	3	1	-	20	20	60	100	4
PCC2	BTMC303	Thermodynamics	3	1	-	20	20	60	100	4
ESC10	BTMES304	Materials Science and Metallurgy	3	1	-	20	20	60	100	4
PCC3	BTMCL305	Machine Drawing and CAD Lab	-	-	4	60	-	40	100	2
PCC4	BTMCL306	Mechanical Engineering Lab – I	-	-	4	60	-	40	100	2
PROJ-2	BTES209P	IT – 1 Evaluation	-	-	-	-	-	100	100	1
		Total	12	4	8	200	80	420	700	21

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course

PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course

HSSMC = Humanities and Social Science including Management Courses

Course Structure for Semester IV

B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) (2022-23)

		Semes	ter IV							
Course	Course Code	Course Title	Teac	ching Sc	heme	Ev	aluatio	N. C		
Category			L	T	P	CA	MSE	ESE	Tota l	No. of Credits
PCC 5	BTMC401	Manufacturing Processes – I	3	1	-	20	20	60	100	4
PCC 6	BTMC402	Theory of Machines-I	3	1	-	20	20	60	100	4
HSSMC3	BTHM403	Basic Human Rights	3	-	-	20	20	60	100	3
ESC11	BTMES404	Strength of Materials	3	1	-	20	20	60	100	4
PEC 1	BTMPE405A-C	Elective-I	3	-	-	20	20	60	100	3
PCC7	BTMCL406	Mechanical Engineering Lab-II	-	-	4	60	-	40	100	2
PROJ- <mark>3</mark>	BTMI40 <mark>7</mark>	Field Training /Industrial Training (minimum of 4 weeks which can be completed partially in the third and fourth semester or in one semester itself)	-	-	-	-	-	-	-	Credits to be evaluated in Sem V
	Total				4	160	100	340	<mark>600</mark>	20

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

HSSMC = Humanities and Social Science including Management Courses

Elective I

Sr. No	Course code	Course Name
1	BTMPE405 <mark>A</mark>	Numerical Methods in Engineering
2	BTMPE405 <mark>B</mark>	Sheet Metal Engineering
<mark>3</mark>	BTMPE405 <mark>C</mark>	Fluid Machinery

Course Structure for Semester V

B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) (2022-23)

		Seme	ster V							
Course	Course Code	Course Title	Teaching Scheme			Evaluation Scheme				No. of
Category			L	T	P	CA	MSE	ESE	Total	Credits
PCC 8	BTMC 501	Heat Transfer	3	1	-	20	20	60	100	4
PCC 9	BTMC 502	Machine Design – I	3	1	-	20	20	60	100	4
PCC 10	BTMC 503	Theory of Machines- II	3	1	-	20	20	60	100	4
PEC 2	BTMPE 504A-C BTAPE50 <mark>4</mark> A,D	Elective-II	3	-	-	20	20	60	100	3
OEC 1	BTMOE 505A-D	Open Elective-I	3	-	-	20	20	60	100	3
PCC 11	BTMC 506	Applied Thermodynamics	3		_	<mark>20</mark>	20	<mark>60</mark>	100	3
PCC12	BTMCL 50 <mark>7</mark>	Mechanical Engineering Lab – III	-	-	6	60	-	40	100	3
PROJ- <mark>3</mark>	BTMI 40 <mark>8</mark>	IT – 2 Evaluation	-	-	-	-	-	100	100	1
		Total	<mark>18</mark>	3	<mark>6</mark>	180	120	500	800	2 5

 $BSC = Basic\ Science\ Course,\ ESC = Engineering\ Science\ Course,\ PCC = Professional\ Core\ Course$

PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course

HSSMC = Humanities and Social Science including Management Courses

Elective II

Sr. No	Course code	Course Name
1	BTMPE504A	Refrigeration and Air conditioning
2	BTMPE504B	Steam and Gas Turbines
3	BTMPE504C	Engineering Tribology
4	BTAPE50 <mark>4</mark> A	Fundamentals of Automobile Design
5	BTAPE504D	Automobile Engineering

Open Elective I

Sr.No.	Course code	Course Name
1	BTMOE505A	Solar Energy
2	BTMOE505B	Renewable Energy Sources
3	BTMOE505C	Human Resource Management
4	BTMOE505D	Product Design Engineering

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Course Structure for Semester VI B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) (2022-23)

		Semes	ter VI							
Course	Course Code	Course Title	Teaching Scheme			Evaluation Scheme				No. of
Category			L	T	P	CA	MSE	ESE	Total	Credits
PCC12	BTMC 601	Manufacturing Processes-II	3	1	-	20	20	60	100	4
PCC13	BTMC 602	Machine Design-II	3	1	-	20	20	60	100	4
PEC3	BTMPE 603A-C BTAPE 603C,E	Elective-III	3		-	20	20	60	100	3
PEC4	BTMPE 604A-D BTAPE 604B	Elective-IV	3		-	20	20	60	100	3
OEC2	BTMOE 605A-E	Open Elective-II	3	-	-	20	20	60	100	3
PCC14	BTMCL 606	Mechanical Engineering Lab – IV	-	-	6	60	-	40	100	3
PROJ-4	BTMS607	B Tech Seminar	-	-	2	<mark>60</mark>		40	100	1
PROJ- <mark>5</mark>	BTMP 608	Mini Project (TPCS)	1	-	2	60	-	40	100	1
PROJ- <mark>6</mark>	BTMI 60 <mark>9</mark> (IT-3)	Field Training / Industrial Training (minimum of 4 weeks which can be completed partially in fifth semester and sixth semester or in one semester itself).	-	-	-	-	-	-	-	Credits to be evaluated in Sem VII
		Total	15	2	10	280	100	420	800	2 2

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course

PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course

HSSMC = Humanities and Social Science including Management Courses

Elective III:

Sr.No	Course code	Course Name
1	BTMPE603A	IC Engines
2	BTMPE603B	Mechanical Vibrations
3	BTMPE603C	Machine Tool Design
4	BTMPE603D	Engineering Metrology and Quality Control
5	BTAPE603C	Advance Automobile Design
6	BTAPE603E	E – Vehicles

Elective IV:

SrNo	Course code	Course Name	
1	BTMPE604A	Process Equipment Design	
2	BTMPE604B	Product Life Cycle Management	
3	BTMPE604C	Finite Element Method	
4	BTMPE604D	Robotics	
5	BTAPE604B	Computational Fluid Dynamics	

Open Elective II:

Sr.No	Course code	Course Name		
1	BTMOE605A	Quantitative Techniques and Project Management		
2	BTMOE605B	Nanotechnology		
3	BTMOE605C	Energy Conservation and Management		
4	BTMOE605D	Wind Energy		
5	BTMOE605E	Introduction to Probability Theory and Statistics		

Semester III Engineering Mathematics-III

BTBS301 Engineering Mathematics-III	BSC 7	3L-1T-0P	4 Credits
-------------------------------------	-------	----------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)
	, ,

Course Objectives:

After completion of the course, students will have adequate background, conceptual clarity and knowledge of appropriate solution techniques related to:

- 1. Linear differential equations of higher order using analytical methods and numerical methods applicable to Control systems and Network analysis.
- 2. Transforms such as Fourier transform, Laplace transform and applications to Communication systems and Signal processing.
- 3. Vector differentiation and integration required in Electro-magnetic and Wave theory.
- 4. Complex functions, conformal mappings, contour integration applicable to Electrostatics, Digital filters, Signal and Image processing.

Course Outcomes:

On completion of the course, students will be able to:

- Solve higher order linear differential equation using appropriate techniques for modeling and analyzing electrical circuits.
- Solve problems related to Fourier transform, Laplace transform and applications to Communication systems and Signal processing.
- Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing.
- Perform vector differentiation and integration, analyze the vector fields and apply to Electromagnetic fields.
- Analyze conformal mappings, transformations and perform contour integration of complex functions in the study of electrostatics and signal processing.

Course Contents:

Unit 1: Laplace Transform

[09 **Hours**]

Definition – conditions for existence; Transforms of elementary functions; Properties of Laplace transforms - Linearity property, first shifting property, second shifting property, transforms of functions multiplied by t^n , scale change property, transforms of functions divided by t, transforms of integral of functions, transforms of derivatives; Evaluation of integrals by using Laplace transform; Transforms of some special functions- periodic function, Heaviside-unit step function, Dirac delta function.

Unit 2: Inverse Laplace Transform

[09 **Hours**]

Introductory remarks ; Inverse transforms of some elementary functions; General methods of finding inverse transforms; Partial fraction method and Convolution Theorem for finding inverse Laplace transforms; Applications to find the solutions of linear differential equations and simultaneous linear differential equations with constant coefficients

Unit 3: Fourier Transform

[09 **Hours**]

Definitions – integral transforms; Fourier integral theorem (without proof); Fourier sine and cosine integrals; Complex form of Fourier integrals; Fourier sine and cosine transforms; Properties of Fourier transforms; Parseval's identity for Fourier Transforms.

Unit 4: Partial Differential Equations and Their Applications [09 Hours]

Formation of Partial differential equations by eliminating arbitrary constants and functions; Equations solvable by direct integration; Linear equations of first order (Lagrange's linear equations); Method of separation of variables – applications to find solutions of one-dimensional heat flow equation

equation $(\frac{6u}{6t} = c^2 \frac{6^2u}{6x^2})$, and one-dimensional wave equation $(i.e. \frac{6^2y}{6t^2} = c_2^2 \frac{6^2y}{6x^2})$.

Unit 5: Functions of Complex Variables [09 Hours]

Analytic functions; Cauchy- Riemann equations in Cartesian and polar forms; Harmonic functions in Cartesian form; Cauchy's integral theorem; Cauchy's integral formula; Residues; Cauchy's residue theorem (All theorems without proofs).

Text Books

- 1. Higher Engineering Mathematics by B. S. Grewal, Khanna Publishers, New Delhi.
- 2. Higher Engineering Mathematics by H. K. Das and Er. Rajnish Verma, S. Chand & CO. Pvt. Ltd., New Delhi.
- 3. A course in Engineering Mathematics (Vol III) by Dr. B. B. Singh, Synergy Knowledge ware, Mumbai
- 4. Higher Engineering Mathematics by B. V. Ramana, Tata McGraw-Hill Publications, New Delhi.

Reference Books

- 1. Advanced Engineering Mathematics by Erwin Kreyszig, John Wiley & Sons, New York.
- **2.** A Text Book of Engineering Mathematics by Peter O' Neil, Thomson Asia Pte Ltd., Singapore.
- **3.** Advanced Engineering Mathematics by C. R. Wylie & L. C. Barrett, Tata McGraw-Hill Publishing Company Ltd., New Delhi.
- **4.** Integral Transforms and their Engineering Applications by Dr. B. B. Singh, Synergy Knowledge ware, Mumbai.
 - 5. Integral Transforms by I. N. Sneddon, Tata McGraw-Hill, New York.

General Instructions:

- 1. The tutorial classes in Engineering Mathematics-III are to be conducted batchwise. Each class should be divided into three batches for the purpose.
- 2. The internal assessment of the students for 20 marks will be done based on assignments, surprise tests, quizzes, innovative approach to problem solving and percentage attendance.
- 3. The minimum number of assignments should be eight covering all topics.

Fluid Mechanics

BTMC302	PCC 1	Fluid Mechanics	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs./week	Continuous Assessment: 20 Marks
Tutorial: 1 hr./week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs.)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

Course Outcomes	Content	Level
CO1	Explain basic properties of fluid, fluid statics, kinematics and dynamics.	Understanding
CO2	Identify various types of flow, flow patterns and their significance.	Understanding
CO3	Explain concepts of flow through pipes, boundary layer theory, forces on immersed bodies and dimensionless parameters.	Understanding
CO4	Derive various equations in fluid mechanics such as Euler's, Bernoulli's, Momentum, Continuity etc.	Apply
CO5	Solve the problems related to properties of fluid, fluid kinematics, fluid dynamics, laminar flow, pipe flow, dimensional analysis, boundary layer theory, and forces on immersed bodies.	Apply

Mapping of course outcomes with program outcomes

Course					Pro	ogram	Outcon	nes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2											
CO2	2											
CO3	2											
CO4	2											
CO5	3	2										

Course Contents:

Unit 1: Fluid Properties and Fluid Statics:

[07 Hours]

- **A)** Fluid Properties: Definition of fluid, Fluid as a continuum, Properties of fluid, Viscosity, Types of fluid, Compressibility, Surface tension, Capillarity and vapor pressure.
- **B)** Fluid Statics: Pascal's law, Hydrostatic law of pressure, Total Pressure, Centre of Pressure, Buoyancy, Meta center, Condition of Equilibrium of floating and submerged bodies (No Numerical Treatment on fluid Statics)

Unit 2: Fluid Kinematics and Dynamics

[07 Hours]

A) Fluid Kinematics: Eulerian and Langragian approach of fluid flow ,Types of flow, Definition of steady, Unsteady, Uniform, Non uniform, Laminar, Turbulent, Compressible, incompressible, rotational, Irrotational flow, 1D-2D flows, Stream line, Streak line, Path line, concept of Velocity, potential & stream function flow net (no numerical treatment),Continuity equation for steady, Unsteady, Uniform, non-uniform, Compressible,

incompressible.

B) Fluid Dynamics: Euler's equation, Bernoulli's equation along a streamline for incompressible flow, Practical applications of Bernoulli's equation - Pitot tube, Venturi meter, Orifice meter

Unit 3: Laminar Flow and Turbulent Flow

[07 Hours]

- **A)** Laminar Flow: Introduction to flow of viscous fluid through circular pipes, two parallel plates derivation and numerical.
- **B)** Turbulent Flow: Major and minor losses. Loss of energy due to friction (Darcy's and Chezy's equation). Minor energy losses in transition, expansion and contraction. Concept of HGL and TEL, flow through syphon, flow through pipes in series or compound pipes, equivalent pipe, parallel pipes, branched pipes, Power transmission through pipes. Moody's Diagram.

Unit 4: Forces on Immersed Bodies and Boundary Layer Theory [07 Hours]

- **A)** Forces on Immersed Bodies: Lift and Drag, Drag on a flat plate and on aerofoil. Types of drags, Development of lift. (Magnus effect) stalling condition of aerofoil.
- **B) Boundary Layer Theory:** Boundary layer thickness, its characteristics, laminar and turbulent boundary layers, separation, boundary layer control.

Unit 5: Dimensional analysis

[07Hours]

Introduction to dimensional analysis, dimensional homogeneity, methods of dimensional analysis- Rayleigh's method, Buckingham's π -theorem, dimensionless numbers. (No numerical treatment)

Text Books:

- 1) P. N. Modi, S. M. Seth, "Fluid Mechanics and Hydraulic Machinery", Standard Book House, 10th edition, 1991.
- 2) Robert W. Fox, Alan T. McDonald, "Introduction to Fluid Mechanics", John Wile and Sons,5thedition.
- 3) Fluid mechanics and Hydraulic machines, Dr. R. K. Bansal , Laxmi Publication, Delhi, 2005

References Books:

- 1) V. L. Streeter, K. W. Bedford and E. B. Wylie, "Fluid Dynamics", Tata McGraw-Hill,9thedition, 1998.
- 2) S. K. Som, G.Biswas, "Introduction to Fluid Mechanics and Fluid Machines", Tata McGrawHill, 2ndedition, 2003

Thermodynamics

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Define the terms like system, boundary, properties, equilibrium, work, heat, ideal gas, entropy etc. used in thermodynamics.
CO2	Studied different laws of thermodynamics and apply these to simple thermal systems to study energy balance.
CO3	Studied Entropy, application and disorder.
CO4	Studied various types of processes like isothermal, adiabatic, etc. considering system with ideal gas and represent them on p-v and T-s planes.
CO5	Represent phase diagram of pure substance (steam) on different thermodynamic planes like p-v, T-s, h-s, etc. Show various constant property lines on them.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1										
CO2	1	2	1									
CO3		1	1									
CO4	2											
CO5	1	1										

Course Contents:

Unit 1: Fundamental Concepts and Definitions [07 Hours]

Thermodynamic system and its type; Macroscopic vs. Microscopic viewpoint, properties, processes and cycles, point function, path function. Thermodynamic equilibrium, Quasi-static process.

Work and heat Transfer: Work transferred and other types of work, Heat transfer, temperature and its measurement (principle of measurement, various instruments etc.). Zeroth law of thermodynamics, specific heat and latent heat, relationship between C_P and C_V .

Unit 2: First Law of Thermodynamics [07 Hours]

First law of thermodynamics for a closed system undergoing a cycle and change of state, Energy, different forms of energy, Enthalpy, PMM-I control volume.

Application of first law of steady flow processes (nozzle, turbine, compressor, pump, boiler,throttle valve etc.)

Unit 3: Second Law of Thermodynamics [07 Hours]

Limitation of first law of thermodynamics, cycle heat engine, refrigerator and heat pump, Kelvin- Plank and Clausius statements and their equivalence, Reversibility and Irreversibility, Carnot cycle, Carnot theorem, Absolute thermodynamic temperature scale.

Entropy: Introduction, Clausius theorem, T-s plot, Clausius inequality, Entropy and Irreversibility, Entropy principle and its application, combined I and II law, Entropy and direction, Entropy and disorder.

Unit 4: Ideal gas [07 Hours]

Boyle's law, Charl's law, Avogadro's law, universal gas constant, ideal processes with question, other equation of states.

Unit 5:Properties of Pure Substance

[07Hours]

Phase change phenomenon of pure substance, phase diagram of pure substance, p-v, T-s, and h-s diagrams properties of steam, critical point parameters, triple point, property table, representation of processes of steam on p-v, T-s, and other diagrams, Dryness fraction and its measurement.

Texts:

- 1. P. K. Nag, "Engineering Thermodynamics", Tata McGraw Hill, New Delhi, 3rd edition,2005.
- 2. Y. A. Cengel, M. A. Boles, "Thermodynamics An Engineering Approach", Tata McGraw Hill, 5thedition, 2006.

References:

- 1. G. J. Van Wylen, R. E. Sonntag, "Fundamental of Thermodynamics", John Wiley and Sons, 5thedition, 1998.
- 2. J. Moran, H. N. Shapiro, "Fundamentals of Engineering Thermodynamics", John Wiley and Sons, 4th edition, 2004.

Material Science and Metallurgy

BTMES304 ESC10 Materials	cience and Metallurgy	3-1-0	4 Credits
--------------------------	-----------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Study various crystal structures of materials
CO2	Understand mechanical properties of materials and calculations of same using
CO2	appropriate equations
CO3	Evaluate phase diagrams of various materials
CO4	Suggest appropriate heat treatment process for a given application
CO5	Prepare samples of different materials for metallography
CO6	Recommend appropriate NDT technique for a given application

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1									
CO2	3	2	2	3	2							
CO3	2	1	2	1	1							
CO4	1	2	2	1	2	1	2	1	1	1		
CO5	1	1	1	3	2		1		1			
CO6	1	1	2	2	2	1	2		1	1		

Course Contents:

Unit 1: Fundamentals

a) Structure of Materials

[07 Hours]

Crystal structures, indexing of lattice planes, Imperfections in crystals-point defects, line defects, Mechanism of plastic deformation, plastic deformation of polycrystalline materials.

b) Mechanical Properties and their Testing

Tensile test, engineering stress-strain curve, true stress-strain curve, types of stress-strain curves, compression test, formability, hardness testing, and different hardness tests-Vickers, Rockwell, Brinnel, Impact test.

Unit 2: Equilibrium Diagrams

[07 Hours]

Definitions of terms, rules of solid-solubility, Gibb's phase rule, solidification of a pure metal, plotting of equilibrium diagrams, lever rule, Iron-iron carbide equilibrium diagram, critical temperatures, solidification and microstructure of slowly cooled steels, non-equilibrium cooling of steels, classification and application of steels, specification of steels, TTT diagram, critical cooling rate, CCT diagram.

Unit 3: Heat Treatment

[07 Hours]

Heat treatment of steels, cooling media, annealing processes, normalizing, hardening, tempering, quenching and hardenability, surface hardening processes-nitriding, carbo-nitriding, flame hardening, induction hardening.

Unit 4: Metallography

[07 Hours]

Microscopy, specimen preparation, polishing abrasives and cloths, specimen mounting, electrolytic polishing, etching procedure and reagents, electrolytic etching, optical metallurgical microscope, Sulphur printing, flow line observations, examination of fractures, spark test, electron microscope.

Unit 5: Strengthening Mechanisms and Non-destructive Testing

[07 Hours]

Refinement of grain size, cold working/strain hardening, solid solution strengthening, dispersion strengthening, Precipitation hardening. Magnetic particle inspection, dye Penetrant inspection, ultrasonic inspection, radiography, eddy current testing.

Texts:

- 1. V. D. Kodgire, S.V. Kodgire, "Material Science and Metallurgy for Engineers", Everest Publishing House, Pune, 24thedition, 2008.
- 2. W. D. Callister, "Materials Science and Engineering: An Introduction", John Wiley and Sons, 5thedition, 2001.
- 3. V. Raghvan, "Material Science Engineering", Prentice Hall of India Ltd., 1992.

References:

- 1. V. B. John, "Introduction to Engineering Materials", ELBS, 6thedition, 2001.
- 2. G. F. Carter, D. E. Paul, "Materials Science and Engineering", ASM International, 3rdedition, 2000.
- 3. T. E. Reed-Hill, R. Abbaschian, "Physical Metallurgy Principles", Thomson, 3rdedition

Machine Drawing and CAD Lab

BTMCL305 PCC3	Machine Drawing and CAD	0-0-4	2 Credits
---------------	-------------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Practical: 4 hrs/week	Continuous Assessment: 60 Marks
	External Exam: 40 Marks

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Interpret the object with the help of given sectional and orthographic views.
CO2	Construct the curve of intersection of two solids
CO3	Draw machine element using keys, cotter, knuckle, bolted and welded joint
CO4	Assemble details of any given part. i. e. valve, pump, machine tool part etc.
CO5	Represent tolerances and level of surface finish on production drawings
CO6	Understand various creating and editing commands in Auto Cad

Mapping of course outcomes with program outcomes

Course Outcomes					Pr	ogram	Outco	mes				
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
CO1	2								3	2		1
CO2	2	1							2	1		1
CO3	2								2	1		
CO4	2	2			1				2	1		1
CO5	1	1			1				2	1		1
CO6	1	1			1				2	2		1

List of Practical's/Experiments/ Assignments (minimum six assignments should be completed)

- 1. One full imperial drawing sheet consisting the drawing/sketches of representation of standard components, symbols of pipe joints, weld joints, rivet joint etc., surface finish symbols and grades, limit, fit and tolerance sketches.
- 2. Two full imperial drawing sheets, one consisting of assembly and the other consisting of details of any one standard component such as valves, components of various machine tools, pumps, joints, engine parts, etc.
- 3. Two assignments of AutoCAD: Orthographic Projections of any one simple machine component such as bracket, Bearing Housing or Cast component for Engineers such as connecting rod, Piston, etc.; with dimensioning and detailing of three views of components.
- 4. 3-D model at least one simple machine component.

Texts:

- 1. N. D. Bhatt, "Engineering Drawing", Charotar Publishing House, Anand, India.
- 2. N. D. Bhatt, "Machine Drawing", Charotar Publishing House, Anand, India.
- 3. Ajeet Sing, "Working with AutoCAD 2000", Tata McGraw Hill, New Delhi.
- 4. George Omura, "ABC of AutoLISP", BPB Publications, New Delhi.

References:

- 1. Narayana, Kannaiah, Reddy, "Machine Drawing", New Age International Publishers.
- 2. AutoCAD and Auto LISP manuals from Autodesk Corp. U.S.A.
- 3. IS Code: SP46-1988, Standard Drawing Practices for Engineering Institutes.

Mechanical Engineering Lab - I

BTMCL306 PCC4	Fluid Mechanics + Material Science and Metallurgy	0-0-4	2 Credit
---------------	--	-------	----------

Practical Scheme:	Examination Scheme:
Practical: 4 hrs/batch	Continuous Assessment: 60 Marks
	External Exam: 40 Marks

Group A (Fluid Mechanics)

List of Practicals/Experiments/Assignments (Any Five from Group A)

- 1. Flow visualization technique: characteristics of laminar and turbulent flow patterns using Helleshaw Apparatus.
- 2. Verification of Bernoulli's theorem
- 3. Determination of Critical Reynolds number using Reynolds Apparatus
- 4. Determination of pressure drop in pipes of various cross-sections
- 5. Determination of pressure drops in pipes of various pipe fittings etc.
- 6. Viscosity measurement using viscometer(at least one type)
- 7. Verification of momentum equation using impact of jet apparatus
- 8. Determination of metacentric height of a floating body
- 9. Calibration of a selected flow measuring device and Bourdon pressure gauge
- 10. Gauge and differential pressure measurements using various types of manometers, Bourdon type pressure gauge.
- 11. Demonstration of measurement using these instruments Lab.
- 12. Experiment to study hydraulic jump.

Group B (Material Science and Metallurgy)

List of Practical's/Experiments/Assignments (Any Four from Group B

- 1. Brinell Hardness Test
- 2. Rockwell Hardness test
- 3. Erichson Cupping Test
- 4. Magnaflux Test
- 5. Dye Penetrant Test
- 6. Specimen Preparation for Microscopy
- 7. Sulphur Print Test
- 8. Spark Test
- 9. Study and drawing of microstructures of plain carbon steels of varying carbon percentage
- 10. Study and drawing of microstructures of heat treated steels
- 11. Jominy End Quench Test
- 12. Study and drawing of microstructures of cast irons

- 13. Study and drawing of microstructures of non-ferrous alloys
 - 14. Hardening of steels of varying carbon percentage

IT – 1 Evaluation

BTES209P	Internship – 1 Evaluation	PROJ-2	OL-OT-OF	1 Credits
(Internship – 1)				

Teaching Scheme:	Examination Scheme:
Lecture:	Continuous Assessment:
	Mid Semester Exam:
	End Semester Exam: 100 Marks

Semester IV Manufacturing Processes-I

BTMC401	PCC 5	Manufacturing Processes-I	3-1-0	4 Credits
---------	-------	---------------------------	-------	-----------

Pre-Requisites: None

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Identify castings processes, working principles and applications and list various defects in metal casting
CO2	Understand the various metal forming processes, working principles and applications
CO3	Classify the basic joining processes and demonstrate principles of welding, brazing and soldering.
CO4	Study center lathe and its operations including plain, taper turning, work holding devices and cutting tool.
CO5	Understand milling machines and operations, cutters and indexing for gear cutting.
CO6	Study shaping, planning and drilling, their types and related tooling's

Mapping of course outcomes with program outcomes

Course	Program Outcomes
--------	------------------

Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1		1	1				1		1
CO2	2	2	1		1	1				1		1
CO3	2	1	1		1	1				1		1
CO4	1		1		1	1				1		1
CO5	2		1		1	1				1		1
CO6	1				1	1				1		1

Course Contents:

Unit 1: Introduction and Casting Processes [07 Hours]

What is manufacturing? Selection of manufacturing processes, Introduction to casting; solidification of metals: Pure metals, Alloys; fluid flow; fluidity of molten metal; heat transfer: Solidification time, Shrinkage; defects: Porosity; Metal casting processes: Introduction; sand casting, shell molding, investment casting; Permanent-mold casting, vacuum casting, die casting, centrifugal casting.

Unit 2: Metal Forming

a) Rolling and Forging Processes

[07Hours]

Introduction to Rolling; Flat-rolling Process: Roll Force, Torque, and Power Requirements, Geometric Considerations; Flat-rolling Practice: Defects in Rolled Plates and Sheets; Rolling Mills; Various Rolling Processes and Mills.

Introduction to forging, Open-die forging; Impression-die and Closed-die forging; various forging Operations; Forging Defects; Forging Machines.

b) Extrusion and Drawing

Introduction; Extrusion Process; Hot Extrusion; Cold Extrusion: Impact extrusion, Hydrostatic Extrusion; Extrusion Defects; Extrusion Equipment; Drawing Process; Drawing Practice; Drawing Defects and Residual Stresses; Drawing Equipment.

Unit 3: Joining Processes

[07Hours]

Oxy-fuel-gas Welding; Arc-Welding Processes: Non consumable Electrode; Arc-welding Processes: Consumable Electrode, Shielded Metal-arc Welding, Submerged-arc Welding, Gas Metal-arc Welding; Electrodes for Arc Welding; The Weld joint, Quality, and Testing: Weld Quality, Weldability, Testing of Welds.

Introduction to solid state welding, Friction Welding, Resistance Welding: Spot, Seam, Projection Welding. Introduction to brazing and soldering.

Unit 4: Machining Processes: Turning and Hole Making

[07 Hours]

Introduction; The Turning Process; Lathes and Lathe Operations: Lathe Components, Work holding Devices and Accessories, Lathe Operations, Types of Lathes. Types of chips, Boring andBoring Machines; Drilling Machines: Drills, Drill Materials and Sizes, Drilling Practice, DrillingMachines, Reaming operation and Reamers; Tapping and Taps.

Unit 5: Machining Processes: Milling, Broaching and Gear Manufacturing [07 Hours] Introduction, Milling and Milling Machines: Peripheral Milling, Face Milling, End Milling, Other Milling Operations and Milling Cutters, Tool holders, Milling Process Capabilities,

Milling Machines; Planning and Shaping; Broaching and Broaching Machines; Gear Manufacturing by Machining: Form Cutting, Gear Generating, Cutting Bevel Gears, Gear-finishing Processes.

Text:

1. Serope Kalpak Jain and Steven R. Schmid, "Manufacturing Engineering and Technology", Addison Wesley Longman (Singapore) Pte. India Ltd., 6thedition, 2009.

References:

- 1. Milkell P. Groover, "Fundamentals of Modern Manufacturing: Materials, Processes, and Systems", John Wiley and Sons, New Jersey, 4th edition, 2010.
- 2. Paul DeGarmo, J.T. Black, Ronald A. Kohser, "Materials and Processes in Manufacturing", Wiley, 10th edition, 2007.

Theory of Machines-I

BTMC402	PCC 6	Theory of Machines-I	3-1-0	4 Credits
---------	-------	----------------------	-------	-----------

Teaching Scheme:	Examination Scheme:					
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks					
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks					
	End Semester Exam: 60 Marks(Duration 03 hrs)					

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Define basic terminology of kinematics of mechanisms
CO2	Classify planar mechanisms and calculate its degree of freedom
CO3	Perform kinematic analysis of a given mechanism using ICR and RV methods
CO4	Introduction of different types of lubrication system.
CO5	Perform kinematic analysis of slider crank mechanism using Klein's construction and
CO3	analytical approach
CO6	Perform balancing of unbalance forces in rotating masses, different types of single/multi
	cylinder reciprocating engines in different positions.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				1								3
CO2				1								3
CO3	1	1		2								3

CO4	1						
CO5	1	1	3				2
CO6	1	1					2

Course Contents:

Unit 1: Velocity Acceleration Analysis

[07 Hours]

Definition of link, pair, kinematics chain, inversions, inversions of single and double slider crank chain, kinematic diagrams of mechanisms, equivalent linkage of mechanism, degree of freedom. Study of various mechanisms such as straight line mechanisms, pantograph, Geneva mechanism, steering gear mechanisms. Instantaneous centre of rotation, body and space centrodes, Kennedy's theorem.

Velocity and acceleration analysis and its purpose, velocity and acceleration diagrams using relative velocity method, Corioli's component of acceleration.

Velocity and acceleration of slider crank mechanism by analytical method and Klein's construction.

Unit 2: Friction and Lubrication

[07 Hours]

Dry friction, friction between nut and screw with different types of threads, Uniform wear theory and uniform pressure theory, Frication at pivot and collars, Friction in turning pair, Friction circle and friction axis, Friction in mechanisms.

Lubrication, Viscosity, Viscous flow, Boundary lubrication, Thick film lubrication, Hydrostatic and hydrodynamic lubrications.

Unit 3: Clutch, Brakes and Dynamometers

[07 Hours]

Friction Clutches: Single plate and multi-plate clutch, Cone clutch, Centrifugal clutch, Torque transmitting capacity, Clutch operating mechanism.

Brakes: Shoe brake, Internal and external shoe brakes, Block brakes, Band brakes, Band and block brakes, Braking torque.

Dynamometers: Different types of absorption and transmission type dynamometers, Construction and working of eddy current dynamometer, Torque measurement.

Unit 4: Cams and Followers

[07 Hours]

Types of cams and followers, Analysis of motion, Jump and ramp of cam, Determination of cam profiles for a given follower motion, Circular arc cam, Tangent cam, Cycloidal cam.

Unit 5: Balancing [07 Hours]

Balancing of rotating masses in one and several planes, balancing of reciprocating, masses in single and multi-cylinder engine viz., inclined, radial and v-type engines, Primary and secondary balancing analysis, Concept of direct and reverse cranks, Balancing of locomotive engines, Effect of partial balancing, Static and dynamic balancing.

Texts:

- 1. A. Ghosh, A. K. Malik, "Theory of Mechanisms and Machines", Affiliated East-West Press Pvt. Ltd., New Delhi.
- 2. S. S. Rattan, "Theory of Machines", Tata McGraw Hill, New Delhi.

References:

- 1. Thomas Beven, "Theory of Machines", CBS Publishers and Distributors, Delhi.
- 2. J. E. Shigely, J. J. Uicker, "Theory of Machines and Mechanisms", Tata McGraw Hill Publications, New York, International Student Edition, 1995.

Basic Human Rights

BTHM403 HSSMC3 Basic Human Rights	3-0-0	3 Credits
-----------------------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the history of human rights.
CO2	Learn to respect others caste, religion, region and culture.
CO3	Be aware of their rights as Indian citizen.
CO4	Understand the importance of groups and communities in the society.
CO5	Realize the philosophical and cultural basis and historical perspectives of human
CO3	rights.
CO6	Make them aware of their responsibilities towards the nation.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
CO1						2						
CO2												
CO3												
CO4									3			
CO5								2		2		

CO6						1

Course Contents:

Unit 1: The Basic Concepts, Fundamental Rights and Economic Program [07 Hours]

Individual, group, civil society, state, equality, justice. Human Values, Human rights and HumanDuties. Declaration of independence, Rights of citizen, Rights of working and exploited people Society, religion, culture, and their inter-relationship. Impact of social structure on humanbehavior.

Social Problems: Social and communal conflicts and social harmony, rural poverty, unemployment, bonded labor.

Unit 2: Workers and Human Rights

[07 Hours]

Migrant workers and human rights violations, human rights of mentally and physically challenged. State, Individual liberty, Freedom and democracy.

Unit 3: NGOs and Human Rights in India

[07 Hours]

Land, Water, Forest issues.

Unit 4: Human Rights in Indian Constitution and Law

[07 Hours]

- i) The constitution of India: Preamble
- ii) Fundamental rights.
- iii) Directive principles of state policy.
- iv) Fundamental duties.
- v) Some other provisions.

Unit 5: UDHR and Indian Constitution

[07 **Hours**]

Universal declaration of human rights and provisions of India; Constitution and law; National human rights commission and state human rights commission.

References:

- 1. Shastry, T. S. N., "India and Human Rights: Reflections", Concept Publishing Company India (P Ltd.), 2005.
- 2. C. J. Nirmal, "Human Rights in India: Historical, Social and Political Perspectives (Law in India)", Oxford

Strength of Materials

BTMES404	ESC11	Strength of Materials	3-1-0	4 Credits
		12 to 10 10 10 10 10 10 10 10 10 10 10 10 10		

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: Engineering Mechanics

Course Outcomes: At the end of the course, students will be able to:

CO1	State the basic definitions of fundamental terms such as axial load, eccentric load,
COI	stress, strain, E, μ, principle stresses, etc.
CO2	Analyze the stresses and strain energy in different load cases
CO3	Design the columns based on deflection
CO4	Design a beam based on bending and shafts based on torsion
CO5	Analyze given beam for calculations of SF and BM
CO6	Calculate slope and deflection at a point on cantilever /simply supported beam
CO6	using double integration, Macaulay's, Area-moment and superposition methods

Mapping of course outcomes with program outcomes

Course	Prog	Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1				1				2
CO2	1	1	2	2								2
CO3	1	1	2	2		1						3
CO4	1	3	2	1								2
CO5	1	1	2	3								2

Course Contents:

Unit 1: Simple Stresses and Strains

[07 Hours]

Mechanical properties of materials, analysis of internal forces, simple stresses and strains, stress-strain curve, Hooke's law, modulus of elasticity, shearing, thermal stress, Hoop stress, Poisson's ratio, volumetric stress, bulk modulus, shear modulus, relationship between elastic constants. Principal Stresses and Strains

Uni-axial stress, simple shear, general state of stress for 2-D element, ellipse of stress, principal stresses and principal planes, principal strains, shear strains, strain rosettes.

Unit 2: Strain energy, resilience and Combined Stresses

[10 Hours]

Strain energy, resilience: Load-deflection diagram, strain energy, proof resilience, stresses due to gradual, sudden and impact loadings, shear resilience, Combined axial and flexural loads, middle third rule, kernel of a section, eccentrically applied load.

Columns and Struts: Concept of short and long Columns, Euler and Rankine's formulae, limitation of Euler's formula, equivalent length, eccentrically loaded short compression members.

Unit 3: Stresses in Beams

[10 Hours]

Moment of inertia of different sections, bending and shearing stresses in a beam, theory of simple bending, derivation of flexural formula, economic sections, horizontal and vertical shear stress, distribution shear stress for different geometrical sections-rectangular, solid circular, I-section, other sections design for flexure and shear.

Torsion

Introduction and assumptions, derivation of torsion formula, torsion of circular shafts, stresses and deformation indeterminate solid/homogeneous/composite shafts, torsional strain energy.

Unit 4: Shear Force and Bending Moment Diagram

[10 Hours]

Introduction to different types of beams, different types of supports & loads. Concept and definition of shear force and bending moment in determinant beams due to concentrated loads, UDL, UVL and couple. Relation between SF, BM and intensity of loading, construction of shear force and bending moment diagram for cantilever, simple and compound beams, defining critical and maximum value and position of point of contra flexure. Construction of BMD and **load** diagram from SFD, Construction of load diagram and SFD from BMD.

Unit 5. Deflection of beams

[08 Hours]

Differential equation of deflected beam, slope and deflection at a point, calculations of deflection for determinate beams by double integration, Macaulay's method, theorem of areamoment method (Mohr's theorems), moment diagram by parts, deflection of cantilever beams, deflection in simple supported beams, mid-span deflection, conjugate beam method, deflection by method of superstition.

Texts:

- S. Ramamrutham, "Strength of Materials", Dhanpat Rai and Sons, New Delhi.
- F. L. Singer, Pytle, "Strength of Materials", Harper Collins Publishers, 2002.
- S. Timoshenko, "Strength of Materials: Part-I (Elementary Theory and Problems)", CBS Publishers, New Delhi.

References:

- E. P.Popov, "Introduction to Mechanics of Solid", Prentice Hall, 2nd edition, 2005.
- S. H. Crandall, N. C. Dahl, T. J. Lardner, "An introduction to the Mechanics of Solids", Tata McGraw Hill Publications, 1978.
- S. B. Punmia, "Mechanics of Structure", Charotar Publishers, Anand.

Numerical Methods in Mechanical Engineering

BTMPE405A	PEC 1	Numerical Methods in Engineering	3-0-0	3 Credits
-----------	-------	----------------------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 0 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Course Outcomes: At the end of the course, students will be able to:

CO1	Describe the concept of error
CO2	Illustrate the concept of various Numerical Techniques
CO3	Evaluate the given Engineering problem using the suitable Numerical Technique
CO4	Develop the computer programming based on the Numerical Techniques

Mapping of course outcomes with program outcomes

	11 0											
Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3		1	3							
CO2	3	3		1	3							
CO3	3	3		1	3							
CO4	3	3		1	3							

Course Contents:

Unit1: Error Analysis [07 Hours]

Significant figures, round-off, precision and accuracy, approximate and true error, truncation error and Taylor series, machine epsilon, data uncertainties, error propagation, importance of error sin computer programming.

Unit2: Roots of Equations

[07 Hours]

Motivation, Bracketing methods: Bisection methods, Open methods: Newton Raphson method, Engineering applications.

Unit3: Numerical Solution of Algebraic Equations

[07 Hours]

Motivation, Cramer's rule, Gauss- Elimination Method, pivoting, scaling, engineering applications.

Unit4: Numerical Integration and Differentiation

[07 Hours]

Motivation, Newton's Cotes Integration Formulas: Trapezoidal Rule, Simpson's rule, engineering applications Numerical differentiation using Finite divide Difference method

Unit5: Curve, Fitting and Interpolation and Computer Programming

[07 Hours]

Motivation, Least Square Regression: Linear Regression, Polynomial regression. **Interpolation:** Newton's Divide Difference interpolation, engineering

applications. Solution to Ordinary Differentiation Equations: Motivation, Euler' sand Modified Euler's Method, Hen's method, Runge–Kutta Method, engineering applications.

Computer Programming

Overview of programming language, Development of at least one computer program based on each unit. **Texts:**

- 1. Steven C Chapra, Reymond P. Canale, "Numerical Methods for Engineers", Tata Mc Graw HillPublications, 2010.
- 2. E. Balagurusamy, "Numerical Methods" Tata McGraw HillPublications,1999.

References:

- 1. V. Rajaraman, "Fundamental of Computers" Prentice Hall of India, New Delhi, 2003.
- 2. S. S. Sastri, "Introductory Methods of Numerical Methods", Prentice Hall of India, New Delhi, 3rd edition, 2003.
- 3. K. E. Atkinson, "An Introduction to Numerical Analysis", Wiley,1978.
- 4. M.J. Maron, "Numerical Analysis: A Practical Approach", Macmillan, New York, 1982

Sheet Metal Engineering

BTMPE405B P	PEC 1 Sheet Metal	Engineering 3	3-0-0 3 Credits
-------------	-------------------	---------------	-----------------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 0 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Recognize common manufacturing processes of Sheet Metal Fabrication
CO2	Understand the principles of design and fabricate of sheet metal products and recognize
CO2	common material used in the industry
CO3	Distinguish Shearing, Drawing and Pressing etc. processes.
CO4	Know types of dies and formability.
CO5	Select mechanical or hydraulic presses for the given process

Mapping of course outcomes with program outcomes

Course		Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	1	1	3	2				2	1		1	
CO2	3			1	3	2	3					2	
CO3	1	1		3	3	2	1		3		1	3	
CO4	3	3	1	1	3		1	1	1				

CO5	3	2		3	3	2		1	3

Course Contents:

Unit1: Introduction [07 Hours]

Importance of sheet metal engineering, materials used, desirable properties of materials in sheet metal products

Unit2: Basic Applications [07 Hours]

Shearing processes like blanking, piercing, and punching.

Unit3: Drawing Processes [07 Hours]

Shallow and deep drawing of cylindrical and rectangular bodies, forming and bending including spring-back.

Unit4: Types of Dies and Mechanical Presses [07Hours]

Dies: Compound dies, progressive dies, and combination dies

Mechanical Presses

Mechanical and hydraulic presses, modern development sin press tools, formability.

Unit 5: Case Studies [07 Hours]

Case studies for manufacturing of sheet metal products in various engineering applications **Texts:**

1. Donaldson al., "Tool Design", Tata McGraw-Hill Publications, New Delhi, 1998.

References:

- 1. P.N.Rao, "Manufacturing Technology, Foundry, Forming and Welding", Vol. I, TataMcGraw Hill Publishing Co. Ltd, New Delhi, 3rd edition, 2004.
- 2. ASMH and book, "Metal Forming", Vol. XV, ASM Publication, Metals Park, Ohio,10thedition,1989.
- 3. A. S. Deshpande, "Die Design Hand book", ASTME.
- 4. Sheet Metal Engineering Notes, IITBombay, 1999.

Fluid Machinery

BTMPE405C PEC 1	Fluid Machinery	3-0-0	3 Credits
-----------------	-----------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 0 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand and apply momentum equation
CO2	Understand and explain Hydrodynamic Machines
CO3	Explain difference between impulse and reaction turbines
CO4	Find efficiencies, draw velocity triangles
CO5	Explain governing mechanisms for hydraulic turbines
CO6	Explain working of various types of pumps, draw velocity diagrams, do simple Calculations
CO7	Design simple pumping systems

Mapping of course outcomes with program outcomes

Course						Progr	am Oı	ıtcome	S			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1									1
CO2	3		3				2					1

CO3	3	2							1
CO4	3	3	2						1
CO5			3						1
CO6	3	3	3	1	1				1
CO7	3	3		3					1

Course Contents:

Unit 1: Momentum Equation and its Applications

[07 Hours]

Impulse momentum, Principle, Fixed and moving flat inclined plates, Curved vanes, Series of plates and vanes, Velocity triangle and their analysis, Water wheels. Hydrodynamic Machines: Classification, General theory, Centrifugal head, Fundamental equations, and Euler's equation, Degree of reaction, Head on machine, various efficiencies, Condition for maximum hydraulic efficiency.

Unit 2: Impulse and Reaction Turbines

[07 Hours]

Impulse principle, Construction of Pelton wheel, Velocity diagrams and its analysis, Number of buckets, Jets, Speed ratio, Jet ratio.

Reaction Turbines: Constructional details of Francis, Kaplan and Propeller turbine, Deciaz turbine, and Draft tube types, Efficiencies, Cavitation.

Unit 3: Governing of Turbines

[07 Hours]

Methods of governing, Performance characteristics, Safety devices, Selection of turbines, Unit quantities, Specific speed, Principles of similarity and model testing.

Unit 4: Centrifugal Pump

[07 Hours]

Construction, Classification, Terminology related to pumps, Velocity triangle and their analysis, Cavitation, NPSH, Thoma's cavitation factor, Priming, Methods of priming, Specific speed, Performance characteristics, Actual thrust and its compensation, Troubleshooting.

Multistage Pumps: Pump H-Q characteristics and system H-Q Characteristics, Series and parallel operation of pumps, Systems in series and parallel, Principle of model testing and similarity.

Unit 5: Special Purpose Pumps

[07 Hours]

Chemical pumps, nuclear pumps, Sewage pumps, Submersible deep well pumps, Pump installation, Energy efficient pumps.

Failure of Pumping System: Pump failures, Remedies, Source failure, Causes and remedies, Trouble shooting.

Miscellaneous Pumps: Reciprocating pump, Gear pump, Vane pump, Lobe pump, etc., Application field (no mathematical treatment).

Texts:

- 1. P. N. Modi, S. M. Seth, "Hydraulics and Fluid Mechanics including Hydraulic Machines", Standard Book House, Rajsons Publications Pvt. Ltd., 20th edition.
- 2. R. K. Bansal, "A Text Book of Fluid Mechanics and Hydraulic Machines", Lakshmi Publications Pvt. Ltd., 9th edition.

References:

1. Yunus A. Çengel, John M. Cimbala, Fluid Mechanics: Fundamentals and Applications", McGraw Hill, 3rd edition, 2014.

Mechanical Engineering Lab II

BTMCL406 PCC7	Manufacturing Processes Lab I+Theory of Machines Lab -I Strength of Materials Lab	0-0-4	2 Credit
---------------	---	-------	----------

Practical Scheme:	Examination Scheme:
Practical: 4 hrs/batch	Continuous Assessment: 60 Marks
	External Exam: 40 Marks

Group A (Manufacturing Processes Lab I)

List of Practical's/Experiments/Assignments (Any Three from Group

A)

Making a job with a process plan involving plain, step and taper turning as well thread cutting as operations on a Centre lathe.

- 1. Preparation of process planning sheet for a job including operations such as milling, drilling and shaping.
- 2. Making a spur gear using universal dividing head on milling machine.
- 3. Making a simple component by sand casting using a split pattern.
- 4. Cutting of a steel plate using oxyacetylene flame cutting /plasma cutting.
- 5. Making a butt joint on two stainless steel plates using TIG/MIG Welding.
- 6. An experiment on shearing operation.
- 7. An experiment on blanking operation.
- 8. An experiment on drawing operation

Group B (Theory of Machines Lab - I)

List of Practical's/Experiments/Assignments (Any Three from Group B)

1. Four sheets (half imperial size)

Graphical solution of problems on velocity, acceleration in mechanisms by relative velocity method, instantaneous center of rotation method and Klein's construction. At least one problem containing Corioli's component of acceleration.

2. Experiments (any 2

- a) Experimental determination of velocity and acceleration of Hooke's joint.
- b) Determination of displacement of slider-crank mechanism with the help of model and to plot velocity and acceleration curves from it.
- c) Experiment on Corioli's component of acceleration.

3. Assignment

Develop a computer program for velocity and acceleration of slider-crank mechanism.

Group C (Strength of Materials Lab)

List of Practical's/Experiments/Assignments (Any Three from Group C)

- 1. Tension test on ferrous and non-ferrous alloys (mid steel/cast iron/aluminum, etc.
- 2. Compression test on mild steel, aluminum, concrete, and wood
- 3. Shear test on mild steel and aluminum (single and double shear tests)
- 4. Torsion test on mild steel and cast-iron solid bars and pipes
- 5. Flexure test on timber and cast-iron beams
- 6. Deflection test on mild steel and wooden beam specimens
- 7. Graphical solution method for principal stress problems
- 8. Impact test on mild steel, brass, aluminum, and cast-iron specimens
- 9. Experiments on thermal stresses
- 10. Strain measurement in stress analysis by photo-elasticity
- 11. Strain measurement involving strain gauges/ rosettes
- 12. Assignment involving computer programming for simple problems of stress, strain Computations.

Semester - V

Heat Transfer

BTMC 501	PCC 8	Heat Transfer	3-1-0	4 Credits
----------	-------	---------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Explain the laws of heat transfer and deduce the general heat conduction equation and to explain it for 1-D steady state heat transfer in regular shape bodies
CO2	Describe the critical radius of insulation, overall heat transfer coefficient, thermal conductivity and lumped heat transfer
CO3	Interpret the extended surfaces
CO4	Illustrate the boundary layer concept, dimensional analysis, forced and free convection under different conditions
CO5	Describe the Boiling heat transfer, Evaluate the heat exchanger and examine the LMTD and NTU methods applied to engineering problems
CO6	Explain the thermal radiation black body, emissivity and reflectivity and evaluation of view factor and radiation shields

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1			1				1			
CO2	3	2			1							
CO3	3	1			2		2		1			
CO4	3	3		1	1				1			
CO5	3	3	3		1		2					
CO6	2	3		2	2		2		1			

Course Contents:

Unit1: Introduction [07 Hours]

Heat transfer mechanism, conduction heat transfer, Thermal conductivity, Convection heat transfer, Radiation heat transfer, laws of heat transfer Steady State Conduction: General heat conduction equation, Boundary and initial Conditions, one dimensional steady state conduction: the slab, the cylinder, the sphere, composite systems.

Unit2: Overall Heat Transfer and Extended Surfaces

[07 Hours]

Thermal contact resistance, Critical radius of insulation, Electrical analogy, and Overall heat transfer coefficient, Heat sources systems, Variable thermal conductivity, extended surfaces. Unsteady State Con duction: Lumped system analysis, Biot and Fourier number, Heisler chart (Numerical examples).

Unit3: Principles of Convection

[07 Hours]

Continuity, Momentum and Energy equations, Hydro dynamic and Thermal boundary layer for aflat plate and pipe flow. Dimensionless groups force convection, relation between fluid friction and heat transfer, turbulent boundary layer heat transfer. Forced

Convection:

Empirical relations for pipe and tube flow, flow a cross cylinders, spheres, tube banks. Free Convection: Free convection from a vertical, inclined and horizontal surface, cylinder and sphere. (Numericalexamples).

Unit4: Heat Exchangers

[07 Hours]

Heat Exchangers: Classification of heat exchangers, temperature distribution in parallel counter flow arrangement, the overall heat transfer coefficient, Analysis of heat exchangers, the log mean temperature difference (LMTD) method, the effectiveness – NTU method, selection of heat exchangers, Introduction to TEMA standard. (Numerical examples).

Unit5: Radiation Heat Transfer

[07 Hours]

Introduction, thermal radiation, Black body

radiation, radiation laws, Radiation properties, Atmospheric and Solar radiation, The view factor Radiation heat transfer from black surfaces, gray surfaces, diffuses surfaces, Radiation shield sand the radiation effect. (Numerical examples).

Texts:

- 1. F. P. Incoropera, D. P.Dewitt, "FundamentalsofHeatandMassTransfer", John-Wiley, 5th edition, 1990.
- 2. S. P. Sukhatme, "A Text book On Heat Transfer", Tata McGraw-Hill Publications, 3rd edition.

References:

- 1. Y. A. Cengel, "Heat Transfer A Practical Approach", Tata McGraw HillPublications,3rdedition,2006.
- 2. J. P. Holman, "HeatTransfer", Tata McGraw Hill Publications, 9th edition, 2004.

Machine Design - I

BTMC 502	PCC 9	Machine Design - I	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Strength of Materials

Course Outcomes: At the end of the course, students will be able to:

CO1	Formulate the problem by identifying customer need and convert into design Specification			
CO2	Understand component behavior subjected to loads and identify failure criteria			
CO3	Analyze the stresses and strain induced in the component			
CO4	Design of machine component using theories of failures			
CO5	Design of component for finite life and infinite life when subjected to fluctuating load			
CO6	Design of components like shaft, key, coupling, screw and spring			

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1						1				1

CO2	3	2		1	1	1	1	1
CO3	1	1			1	1	1	1
CO4	3	3	2	1	2	1	1	1
CO5	1	1			1	1	1	1
CO6	2	2	2	1	1	1	1	1

Course Contents:

Unit 1: Mechanical Engineering Design Process

[07 Hours]

Traditional design methods, general industrial design procedure, design considerations, phases in design, creativity in design, use of standardization, preferred series, introduction to ISO 9000, use of design data book, aesthetic and ergonomic considerations in design.

Unit2:DesignofMachineElementsagainstStaticLoading

[07 Hours] Theories

of Failure(Yield and Fracture Criteria): Maximum normal stress theory, Maximum shear stress theory, Maximum distortion energy theory, comparisonof various theories of failure, Direct loading and combined loading, Joints subjected to static loadinge.g. cotter and knuckle joint.

Unit3: Design against Fluctuating Loads

[07 Hours]

Stress concentration, stress concentration factors, fluctuating stresses, fatigue failure, endurance limit, notch sensitivity, approximate estimation of endurance limit, design for finite life and finite life under reversed stresses, cumulative damage in fatigue, Soderberg and Goodman diagrams, fatigue design under combined stresses.

Unit4:Design of Shafts Keys and Couplings

[07 Hours] Various design

considerations in transmission shafts, splined shafts, spindle and axles strength, lateral and torsional rigidity, ASME code for designing transmission shaft.

Types of Keys: Classification and fitmentin key ways, Design of various types of keys.

Couplings: Design consideration, design of rigid, muff and flange type couplings, and design offlexible

couplings.

Unit5: Design of Threaded Joints and Mechanical Springs

[07 Hours]

Power Screws: Forms of threads used for power screw and the it sapplications, torque analysis for square threads, efficiency of screw, overall efficiency, self- locking in power screws, stresses in the power screw, design of screw and nut, differential and compound screw,recirculating balls crew.

Welded Joints: Type of welded joints, stresses in butt and fillet welds, strength of welded jointssubjected to bending moments.

Mechanical Springs: Stress deflection equation for helical spring, Wahl's factor, style of ends, design of helical compression, shot peening.

Texts:

- 1. V. B. Bhandari, "Design of Machine Elements", TataMcGrawHill Publications, NewDelhi, 2008.
- 2. R. L.Nortan, "Machine Design: An Integrated Approach", Pearson Education Singapore, 2001.

- 1. R. C.Juvinall, K. M.Marshek, "Fundamentalofmachinecomponentdesign", John Wiley&SonsInc., NewYork, 3rdedition, 2002.
- 2. B. J. Hamrock, B. Jacobsonand Schmid Sr., "Fundamentals of Machine Elements", International Edition, New York, 2nd edition, 1999.
- 3. A. S.Hall, A. R.Holowenko, H. G.Langhlin, "TheoryandProblemsofMachine Design", Schaum's OutlineSeries, Tata McGrawHillbookCompany, NewYork, 1982.
- 4. J. E.ShigleyandC.Mischke, "MechanicalEngineeringDesign", Tata McGrawHill Publications,7thedition, 2004.
- 5. M. F.Spotts, "DesignofMachineElements", PrenticeHallofIndia, NewDelhi.

Theory of Machines - II

B1MC 503	PCC 10	Theory of Machines - II	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Engineering Mechanics, TOM - I

Course Outcomes: At the end of the course, students will be able to:

CO1	Identify and select type of belt drive for a particular application
CO2	Evaluate gear tooth geometry and select appropriate gears, gear trains
CO3	Characterize flywheels as per application requirement
CO4	Understand gyroscopic effects in ships, aeroplanes, and road vehicles.
CO5	Understand free and forced vibrations of single degree freedom systems

Mapping of course outcomes with program outcomes

		trupping of course outcomes with program outcomes										
Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	1		2		1			2		2
CO2	2	3					1					3
CO3		2		1								
CO4	2	3		2								3
CO5	2	3		3								3

Course Contents:

Unit 1: Belt Drives [07 Hours]

Flat belts: Effect of slip, Creep, crowing of pulley, Length of belt, Centrifugal tension, Initial tension in belts, ratio of belt tensions, power transmitted.

V- Belts: Advantages of V-Belts over Flat Belt, ratio of belt tensions, torque transmitted.

Unit 2: Toothed Gears [07 Hours

Classification of gears, Terminology of spur gears, Conjugate action, Involute and cycloidal profiles, Path of contact, Arc of contact, Contact ratio, Interference, Undercutting, Backlash. Introduction to Internal gears.

Helical gear terminology, Normal and transverse module, Virtual number of teeth.

Unit 3: Worm & Bevel Gear & Gear Trains

[07 Hours]

Introduction & terminology of Worm gears & Bevel gear, concept of virtual number of teeth in bevel gear, Efficiency of worm gear.

Types of gear trains, Simple, Compound & Reverted Gear Trains, their Velocity ratios, Simple Epicyclic Gear Train & its Velocity Ratios.

Unit 4: Flywheel and Gyroscope

[07 Hours]

Flywheel: Turning moment diagram, Energy stored in the flywheel, Fluctuation of energy and speed, Determination of mass of flywheel for four stroke single cylinder IC Engine & simple Punching Press.

Gyroscope: Principles of gyroscopic action, Precession and gyroscopic acceleration, gyroscopic couple, Effect of the gyroscopic couple on Aeroplane, Naval ships and four wheelers.

Unit 5: Vibration [07 Hours]

Mechanical Vibration: Basic concepts and definitions of Vibration, Single degree of freedom system, Undamped free vibrations, Natural frequency of Longitudinal & transverse vibrations of shaft with point loads (neglecting inertia), Introduction to damped free vibrations & equation of motion, Types of damping. Critical or whirling Speed of shaft in undamped system. Introduction to forced vibrations

Torsional Vibrations: Natural frequency & modes of single and two rotor system.

Texts:

- 1. S. S. Rattan, "Theory of Machines," Tata McGraw Hill Publications, New Delhi.
- 2. Thomas Beven, "Theory of machines," CBS Publishers, Delhi, 1984.
- 3. Kelly, Graham S., "Mechanical Vibrations," Schaum's Outline Series, McGraw Hill, New York, 1996.
- 4. Rao, J.S., "Introductory Course on Theory and Practice of Mechanical Vibration", New age International (P) Ltd, New Delhi, 2nd edition, 1999.

- 1. Rao Singiresu, "Mechanical Vibrations", Pearson Education, New Delhi, 4th edition 2004.
- 2. J. E. Shigley, J. J. Vicker, "Theory of Machines and Mechanisms", Tata McGraw Hill International.

Refrigeration and Air Conditioning

BTMPE504A PEC	Refrigeration and Air Conditioning	3-0-0	3 Credits
---------------	------------------------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Unit 1: Air Refrgeration System

[07 Hours]

Introduction, standard rating of refrigerating machine, coefficient of performance of refrigerator and heat pump. , Reversed Carnot cycle and its limitations, reversed Brayton cycle, application to air craft refrigeration. Bootstrap refrigeration cycle, reduced ambient air cooling system, Regenerative air cycle system

Designation of refrigerant, selection of refrigerant, Desirable Properties, Primary and secondary refrigerants, azeotropes and its uses

Unit 2: Vapour Compression System

[07 Hours]

Thermodynamics analysis, theoretical and actual cycle, Use of P-h and T-s diagram for problem solving, COP, Effect of evaporator and condenser temperature on cycle performance, Effects of suction superheating

Liquid sub-cooling, liquid-vapour heat exchanger, estimation of compressor displacement, COP and power requirement, waste heat recover opportunities

Unit 3: Compound Vapour Compression System

[07 Hours]

Multi-evaporator, multi-compressor systems, cascade system

Vapour Absorption System: Aqua-ammonia system, lithium bromide-water system, Electrolux refrigerator, comparison with vapour compression cycle (descriptive treatment only), use of enthalpy concentration, thermodynamic analysis, and capacity control, solar refrigeration system

Unit 4: Air Conditioning:

[07 **Hours**]

Psychrometry, properties of moist air, Psychometric charts. Psychometric processes, bypass factor Sensible and latent heat loads, SHF, GSHF, RSHF, All air system, all water system, unitary systems; window air-conditioner, split air-conditioners, refrigeration and air-conditioning controls

Unit 5: Air Conditioning Process Calculation

[07 Hours]

Introduction to comfort air conditioning ,human comfort and comfort chart, Load calculation, outside conditions, indoor conditions, estimation of coil capacity required, evaporative cooling Principle of air distribution, duct design methods, friction chart, duct materials, methods of noise control

Texts:

1. Arora, C.P., Refrigeration and Air Conditioning, Tata McGraw Hills, New Delhi, Second Edition, 2000.

2. Stoeker, W.F. and Jones, J.P., Principles of Refrigeration and Air Conditioning, McGraw Hill, New York, Second Edition, 1982.

- 1. ASHRAE Handbook Fundamentals and Equipment, 1993.
- **2.** ASHRAE Handbook Applications, 1961.
- **3.** ISHRAE Handbook
- 4. NPTEL Lectures by Prof. RamGopal, IIT Kharagpur
- **5.** Carriern Handbook
- **6.** Jord R.C., and Priester, G.B., Refrigeration and Air Conditioning, Prentice Hall of India Ltd., New Delhi, 1969.
- 7. Threlkeld, J.L., Thermal Environmental Engineering, Prentice Hall, New York, 1970.

Steam and Gas Turbine

BTMPE504B	PEC 2	Steam and Gas Turbine	3-0-0	3 Credits
-----------	-------	-----------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	State Various properties of Steam, Draw P-V, T-s, H-s (Mollier) diagrams for steam, Describe Theoretical steam turbine cycle.
CO2	Define and Understand Various Types of Design of Turbines.
CO3	Perform analysis of given steam and gas Turbine power plant (Efficiencies, Power Output, Performance)
CO4	Study and apply various Performance improvement Techniques in steam and gas Turbines
CO5	Assess factors influencing performance of thermal power plants,
CO6	Apply various maintenance procedures and trouble shootings to Turbines.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1										
CO2	1	1										
CO3		2			2							
CO4	1				1	2	2					
CO5	1	2										
CO6	1	1		3								

Course Contents:

Unit 1: Introduction [07 Hours]

Properties of steam, Theoretical steam turbine cycle. The flow of steam through Impulse and Impulse–Reaction turbine blades

Unit 2: [07 Hours]

Vortex flow in steam turbines, Energy lines, State point locus, Reheat factor and Design procedure. Governing and performance of steam turbine

Unit 3: Gas Turbine [07 Hours]

Introduction, simple open cycle gas turbine, Actual Brayton cycle, Means of Improving the

efficiency and the specific output of simple cycle,

Unit 4: Gas Turbine Cycle Modifications and Performance

[07 Hours]

Regeneration, Reheat, Intercooling, closed-cycle gas turbine, turbine velocity diagram and work done.

Unit 5: Turbine Cooling and maintenance

[07 Hours]

Turbine blade cooling, material, protective coating, Performance of turbine, Application of turbine. Lubrication, cooling, fuel supply and control, Maintenance and trouble shooting.

Texts:

1. W. J. Kearton, "Steam Turbine Theory and Practice", ELBS.

References:

1. R. Yadav, "Steam and Gas Turbine", Central Publishing Home, Allahabad. Jack D. Mattingly, "Elements of Gas Turbine propulsion", Tata McGraw Hill Publications.

Engineering Tribology

BTMPE504C	PEC2	Engineering Tribology	3-0-0	Credits
-----------	------	-----------------------	-------	---------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the basic concepts and importance of tribology.
CO2	Evaluate the nature of engineering surfaces, their topography and surface
CO2	characterization techniques
CO3	Analyze the basic theories of friction and frictional behavior of various materials
CO4	Select a suitable lubricant for a specific application
CO5	Compare different wear mechanisms
CO6	Suggest suitable material combination for tribological design.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	1	2	2		1						
CO3	2	3	1	2	1	1	1					
CO4	2	2	2		1	1	2		1		1	
CO5	1	1	1	1	1							
CO6	2	2	2		2	2	2		1	1	1	

Course Contents:

Unit1: Introduction

[07 Hours]

Definition of tribology, friction, wear and lubrication; importance of the tri-bological tudies. Surface Topography: Methods of assessment, measurement of surface roughness-different statistical parameters (R_a , R_z , R_{max} ,etc.),contact between surfaces, deformation between single and multiple asperity contact, contact theories involved

Unit2: Friction [07 Hours]

Coulomb laws of friction, its applicability and limitations, comparison between static, rollingand kinetic friction, friction theories, mechanical interlocking, molecular attraction, electrostatic forces and welding, shearing and ploughing, models for asperity deformation.

Unit3: Lubrication [07 Hours]

Types of lubrication, viscosity, characteristics of fluids lubricant, hydrodynamic lubrication, Reynold's equation, elasto-hydrodynamic lubrication: partial and mixed, boundary lubrication, various additives solid lubrication.

Unit4: Wear [07 Hours]

Sliding wear: Abrasion, adhesion and galling, testing method spin-on-disc, block-onring, etc. theory of sliding wear, un-lubricated wear of metals, lubricated wear of metals, fretting wear of metals, wear of ceramics and polymers.

Wearing by plastic deformation and brittle fracture. Wear by hard particles: Two-body abrasive wear, three-body abrasive wear, erosion, effects of hardness shape and size of particles.

Unit5: Wear and Design and Materials for Bearings

[07 Hours]

Introduction, estimation of wear rates, the systems approach, reducing ear by changingthe operating variables, effect of lubrication on sliding wear, selection of materials and surface engineering. Principles and applications of tribo design

Materials for Bearings

Introduction, rolling bearings, Fluid film lubricated bearings, marginally lubricated and dry bearings, gas bearings.

Texts:

- 1. I. M. Hutchings, "Tribology, Friction and Wear Engineering Materials", Edward Arnold, London.
- 2. R. C. Gunther, "Lubrication", Baily Brother sand Swinfen Limited.
- 3. F. T. Barwell, "Bearing Systems, Principles and Practice", Oxford University Press.

- 1. B. C. Majumdar, "Introduction to Tribology of Bearings", A. H. Wheeler & Co. Private Limited, Allahabad.
- 2. D. F. Dudley, "Theory and Practice of Lubrication for Engineers", John Willey and Sons.
- 3. J. Halling, "Principles of Tribology", Mc Millan Press Limited.
- 4. Cameron Alas Tair, "Basic Lubrication Theory", Wiley Eastern Limited.
- 5. M. J. Neale, "Tribology Handbook", Butterworth's.
- 6. D. D. Fuller, "Lubrication".

Fundamentals of Automobile Design

BTAPE504A	Automobile Design (Product Design, PLM, CAE, Catia)	PEC 2	3L-0T-0P	3 Credits
-----------	---	-------	----------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Identify the different parts of the automobile.
CO2	Explain the working of various parts like engine, transmission, clutch, brakes etc.,
CO3	Demonstrate various types of drive systems.
CO4	Apply vehicle troubleshooting and maintenance procedures.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1										
CO2	1	2		2		1						
CO3	1	1		1	1							
CO4	2			3	1							

Course Contents:

Domain related training (Approx. 20 Hrs)

Unit 1: [07 Hours]

Introduction to Styling, Basic of Design - Introduction to Design, Good Design & it's Examples of All Time, Industrial Design & its use. Design Process - Typical Product Life Cycle, Automotive Design Process (for production release), Design Studio (Automotive studio) Process or Product Conceptualization Process, Case Study. CAS Surfaces or Digital Clay Models, Class A Surfaces - Role of Class A surface Engineer, Requirements for a Surface to fulfill "Class A Surface" Standards, Case Studies for Class A Surfaces, Class A Surface Creation for Bonnet

Unit 2: [07 Hours]

Introduction to Body In White: Introduction & familiarization to Body In White (BIW), various type of BIW, Types of BIW sub system, various aggregates of BIW. Bonnet Design Case Study: Function of Bonnet, Defined Input to Bonnet, Intended Input to Bonnet Design. Steps in Bonnet design, Study of Class A Surfaces, Hood Package Layout, Typical Sections, Block Surfaces in 3D, Dynamic Clearance Surfaces in 3D, Hood Structural Members, CAE 1(Durability, Crash), Panel Detail Design, Body Assembly Process, CAE 2(Durability, crash,

individual panel level), Design Updating & Detailing Prototypes, Design Updating & Production Release

Unit 3: [07 Hours]

Introduction to CAE & its importance in the PLM, Introduction to FEA & its applications (NVH, Durability & Vehicle Crashworthiness). Introduction of Pre-Processor, Post-Processor & Solvers. Importance of discretization & Stiffness Matrix (for automobile components). Importance of oil canning on an automobile hood with Case study related to Durability Domain. Modal analysis on the hood (Case Study related to NVH Domain). Introduction of vehicle crashworthiness & Biomechanics (Newtonian laws, energy management, emphasis of impulse in car crashes). Head impact analysis as a Case study on the hood of an automobile (Eurocamp test regulation). Importance of Head performance criteria (HPC). Introduction to failure criteria (By explaining the analogy of using uni-axial test results for predicting tri-axial results in reality), Mohr's Circle, Von-Mises stress criteria, application of various failure criteria on brittle or ductile materials

Unit 4: [07 Hours]

Introduction to CAD, CAM& CAE, FEA - Definition, Various Domains – NVH, Dura, Crash, Occupant Safety, CFD. Implicit vs. Explicit Solvers, Degree of Freedom, Stiffness Matrix, Pre-Post & Solver; Types of solvers, Animation. Durability -Oil Canning, Oil Canning on Hood, Scope of work, Loading, Boundary Conditions, Results & Conclusions. NVH – Constrained Modal Analysis, Constrained Modal Analysis on Hood, Scope of work, Loading, Boundary Conditions, Results & Conclusions. Crash – Vehicle Crashworthiness, Energy Management, Biomechanics, Head Impact Analysis on Hood, Importance of Failure Criteria, Von-Mises Stress

Unit 5: [07 Hours]

Sheet metal design & Manufacturing Cycle, Simultaneous Engineering (SE) feasibility study, Auto Body & its parts, important constituents of an automobile, sheet metal, sheet metal processes. Type of draw dies, Draw Model development & its considerations. Forming Simulations, Material Properties, Forming Limit Curve (FLD), Pre-Processing, Post-Processing, Sheet metal formability- Simulation

Die Design —Sheet metal parts, Sheet metal operations (Cutting, Non-Cutting etc.), Presses, Various elements used in die design, Function of each element with pictures, Types of dies, Animation describing the working of dies, Real life examples of die design. **Fixture Design** —Welding (Spot/Arc Welding), Body Coordinates, 3-2-1 principle, Need for fixture, Design considerations, Use of product GD&T in the fixture design, fixture elements. Typical operations in Sheet metal Fixture (Manual/Pneumatic/Hydraulic fixture), Typical unit design for sheet metal parts (Rest/Clamp/Location/Slide/Dump units/Base), Types of fixture (Spot welding/ Arc welding/ Inspection fixture/Gauges)

Tools related training (Approx. 20 Hrs):

Depending on the tools available in the college, the relevant tool related training modules shall be enabled to the students.

AutoCAD, AutoCAD Electrical, AutoCAD Mechanical, AutoCAD P&ID, Autodesk 3ds Max, Autodesk Alias, Autodesk Sketch Book, Automotive, CATIA V5, CATIA V6, FEA, Autodesk Fusion 360, Autodesk Inventor, Autodesk Navisworks, Autodesk Ravit, Autodesk

Showcase, Autodesk Simulation, PTC Creo, PTC Pro ENGINEER, Solid Edge, SOLIDWORKS.

Texts:

- 1. Notes of TATA Technologies
- 2. Curt Larson, "Datum Principles: Flexible Parts: Applications for Automotive Body-in-White and Interior Trim (Dimensional Management Series Book 1)", Right Tech, Inc., Kindle Edition.
- 3. Curt Larson, "Datum Principles: Flexible Parts: Applications for Automotive Body-in-White and Interior Trim (Dimensional Management Series Book 2)", Right Tech, Inc., Kindle Edition.
- 4. Vukato Boljanovic, "Sheet Metal Forming Processes and Die Design", Industrial press Inc., Kindle Edition.

- 1. Ibrahim Zeid, "CAD/CAM Theoryand Practice", Tata McGraw-Hill Publication,
- 2. Mikell P. Grover "Automation, Production Systems and Computer-Integrated Manufacturing", Pearson Education, New Delhi.
- 3. P. Radhakrishnan & S. Subramanyan "CAD/CAM/CIM" Willey Eastern Limited New Delhi.
- 4. On wubiko, C., "Foundation of Computer Aided Design", West Publishing Company.1989
- 5. R.W. Heine, C. R. Loper and P.C.Rosenthal, *Principles of Metal Casting*, McGraw Hill, Newyork, 1976.
- 6. J. H. Dubois And W. I. Pribble, *Plastics Mold Engineering Handbook*, Van Nostrand Reihnhold, New York, 1987.
- 7. N. K. Mehta, Machine tool design, Tata McGraw-Hill, New Delhi, 1989.
- 8. Geoffrey Boothroyd, Peter Dewhurst and Winston Knight, Product Design for Manufacturing and Assembly, 2nd Edition
- 9. C. Howard, *Modern Welding Technology*, Prentice Hall, 1979.
- 10. Grieves, Michael, Product Lifecycle Management, McGraw-Hill, 2006. ISBN 0071452303
- 11. Stark, John. Product Lifecycle Management: Paradigm for 21st Century Product Realization, Springer Verlag, 2004. ISBN 1852338105

Automobile Engineering

BTAPE504D	PEC2	Automobile Engineering	3-0-0	
-----------	------	------------------------	-------	--

Teaching Scheme	Examination Scheme
Lecture: 3 Hrs/week	Continuous Assessment: 20 Marks
	Mid semester examination: 20 Marks
	End Semester Exam: 60 Marks (3 hrs
	duration)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to :

CO1	Identify the different parts of the automobile.

CO2	Explain the working of various parts like engine, transmission, clutch, brakes etc.,
CO3	Demonstrate various types of drive systems; front and rear wheels, two and four wheel
drive	
CO4	Apply vehicle troubleshooting and maintenance procedures.
CO5	Analyze the environmental implications of automobile emissions. And suggest suitable
	regulatory modifications.

Mapping of course outcomes with program outcomes

CourseOu					Pı	ogram	Outc	omes				
tcomesC	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10PC)11PO	12
01	2	1										
CO2	1	2		2		1						
CO3	1	1		1	1							
CO4	2			3	1							
CO5		2			1	1	2					
CO6	1		2			2						

Course Contents:

Unit1: Introduction

Vehicle specifications, Classifications, Chassis layout, Frame, Main components of automobile and articulated vehicles; Engine cylinder arrangements, Power requirements, Tractive efforts and vehicle performance curves.

Unit2: Steering and Suspension Systems

Steering system; Principle of steering, Centre point steering, Steering linkages, Steering geometry and wheel alignment, power steering.

Suspension system: its need and types, Independent suspension, coil and leaf springs, Suspension systems for multi-axle vehicles, troubleshooting and remedies.

Unit3: Transmission System

Clutch: its need and types, Gearboxes: Types of gear transmission, Shift mechanisms, Over running clutch, Fluid coupling and torque converters, Transmission universal joint, Propeller shaft, Front and rear axles types, Stub axles, Differential and its types, Four wheel drive.

Unit4: Brakes, Wheels and Tyres

Brake: its need and types: Mechanical, hydraulic and pneumatic brakes, Disc and drum type: their relative merits, Brake adjustments and defects, Power brakes

Wheels and Tyres: their types; Tyre construction and specification; Tyre wear and causes; Wheel balancing.

Unit5: Electrical Systems

Construction, operation and maintenance of lead acid batteries, Battery charging system, Principle and operation of cutout and regulators, Starter motor, Bendix drive, Solenoid drive, Magneto-coil and solid stage ignition systems, Ignition timing.

Vehicle Testing and Maintenance

Need of vehicle testing, Vehicle test standards, Different vehicle tests, Maintenance: trouble shooting and service procedure, over hauling, Engine tune up, Tools and equipment for repair and overhauling, Pollution due to vehicle emissions, Emission control system and regulations.

Texts:

- 1. Kripal Singh, "Automobile Engineering", Vol.I and II, Standard Publishers.
- 2. G.B.S.Narang, "Automobile Engineering", Dhanpat Rai and Sons.

- 1. Joseph Heitner, "Automotive Mechanics", East-West Press.
- 2. W.H.Crouse, "Automobile Mechanics", Tata McGraw Hill Publishing Co.

Open Elective-I

Solar Energy

BTMOE505A	OEC1	Solar Energy	3-0-0	3 credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Describe measurement of direct, diffuse and global solar radiations falling on horizontal and inclined surfaces.
CO2	Analyze the performance of flat plate collector, air heater and concentrating type collector.
CO3	Understand test procedures and apply these while testing different types of collectors.
CO4	Study and compare various types of thermal energy storage systems.
CO5	Analyze payback period and annual solar savings due to replacement of conventional systems.
CO6	Design solar water heating system for a few domestic and commercial applications.

Mapping of course outcomes with program outcomes

		<u> </u>					<u> </u>					
Course						Progra						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1											
CO2	1	2				1						
CO3	2			1	1		2					
CO4	1	1										
CO5		2			1							
CO6			2	3		1	1					

Course Contents

Unit 1: Solar Radiation

[07 Hours]

Introduction, spectral distribution, solar time, diffuse radiation, Radiation on inclined surfaces, measurement of diffuse, global and direct solar radiation.

Unit 2: Liquid Flat Plate Collectors

[07 Hours]

Introduction, performance analysis, overall loss coefficient and heat transfer correlations, collect or efficiency factor, collect or heat removal factor, testing procedures.

Unit 3: Solar Air Heaters

[07 Hours]

Introduction, types of air heater, testing procedure.

Unit 4: Concentrating Collectors

[07 Hours]

Types of concentrating collectors, performance analysis

Unit 5: Thermal Energy Storage and Economic Analysis

[07 Hours]

Introduction, sensible heat storage, latent heat storage and thermo chemical storage

Solar Pond: Solar pond concepts, description, performance analysis, operational problems.

Economic Analysis

Definitions, annular solar savings, payback period.

Texts:

- 1. J. A. Duffie, W. A. Beckman, "Solar Energy Thermal Processes", John Wiley, 1974.
- 2. K. Kreith, J. F. Kreider, "Principles of Solar Engineering", Tata McGraw-Hill Publications, 1978.

- 1. H. P. Garg, J. Prakash, "Solar Energy: Fundamentals and Applications", Tata McGraw Hill Publications, 1997.
- 2. S. P. Sukhatme, "Solar Energy Principles of Thermal Collection and Storage", Tata McGraw Hill Publications, 1996.

Renewable Energy Sources

BTMOE505B OEC1	Renewable Energy Sources	3-0-0	Credits
----------------	--------------------------	-------	---------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Explain the difference between renewable and non-renewable energy
CO2	Describe working of solar collectors
CO3	Explain various applications of solar energy
CO4	Describe working of other renewable energies such as wind, biomass, nuclear

Mapping of course outcomes with program outcomes

			0				1 0					
Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3		2	3	3	3	2	2		2
CO2	1	1	3	1	2	3	3	3	2	2		2
CO3	2	1	1				3	2		1		2
CO4	3	3			2	3	3	2				1

Course Contents:

Unit 1: Solar Energy

[07 Hours]

Energy resources, Estimation of energy reserves in India, Current status of energy conversion Spectral distribution, Solar geometry, Attenuation of solar radiation in Earth's atmosphere, Measurement of solar radiation, Properties of opaque and transparent surfaces.

Unit 2: Solar Collectors

[07 Hours]

Flat Plate Solar Collectors: Construction of collector, material, selection criteria for flat plate collectors, testing of collectors, Limitation of flat plate collectors, Introduction to ETC.

Concentrating type collectors: Types of concentrators, advantages, paraboloid, parabolic trough, Heliostat concentrator, Selection of various materials used in concentrating systems, tracking.

Unit 3: Solar Energy Applications

[07 Hours]

Air/Water heating, Space heating/cooling, solar drying, and solar still, Photo-voltaic conversion.

Unit 4: Wind Energy and Biomass

Introduction to wind energy, Types of wind mills, Wind power availability, and wind power development in India. Evaluation of sites for bio-conversion and Introduction to biomass resources, Location of plants, Biomass conversion process,

Unit 5: Other Renewable Energy Sources

[07 Hours]

Tidal, Geo-thermal, OTEC, hydro-electric, Nuclear energy

Texts:

1. Chetan singh Solanki, "Renewable Energy Technologies", Prentice Hallo India, 2008.

- 1. S. P. Sukhatme, "Solar Energy: Principles of Thermal Collection and Storage", Tata McGraw-HillPublications, NewDelhi, 1992.
- 2. G. D.Rai, "SolarEnergyUtilization", KhannaPublisher, Delhi, 1992.

Human Resource Management

BTMOE505C OEC1 Human Resource Management	3-0-0	3 Credits
--	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Describe trends in the labor force composition and how they impact human resource
COI	management practice.
CO2	Discuss how to strategically plan for the human resources needed to meet
CO2	organizational goals and objectives.
CO3	Define the process of job analysis and discuss its importance as a foundation for human
COS	resource management practice
CO4	Explain how legislation impacts human resource management practice.
CO5	Compare and contrast methods used for selection and placement of human resources.
CO6	Describe the steps required to develop and evaluate an employee training program
CO7	Summarize the activities involved in evaluating and managing employee performance.
CO8	Identify and explain the issues involved in establishing compensation systems.

Mapping of course outcomes with program outcomes

Course	Progr	am Ou	tcomes	S								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					2						1	
CO2											3	
CO3										2		
CO4								2		2		
CO5									2	3		
CO6										1		3
CO7										2	2	
CO8											2	

Course Contents:

Unit1: Introduction to Human Resource management

[07 Hours]

Concept of management, concept of human resource management, personnel to humanresource management, human resource management model, important environmentalinfluences like government regulations, policies, labor laws and other legislation. Acquisition of humresources: Human resource planning, Demand for man power, Weaknesses of man power planningg, job analysis, job specification, recruitment sources, recruitment advertising, the selection process, selection devices, equal opportunities: Indian and foreign practices, socializing the new employee

Unit2: Development of Human resources

[07 Hours]

Employee Training and Management Development: Training, Training and Learning ,Identification of training needs , training methods, Manager Development , Methods for developing managers , evaluating training effectiveness

Career Development: Concept of career, value of effective career development, external versus internal dimensions to a career, career stages, linking career dimensions with stages

Unit3:Motivation of Human resources

[07 **Hours**]

Definition of motivation, Nature and Characteristics of Motivation ,The ories of motivation : a slow's Need Hierarchy Theory , Drucker Theory , Likert Theory ,Herzberg Two Factortheory, Mc Clell and Theory, McGregor

Theory X and Y, etc., Psychological approach .Job Design and Work Scheduling: Design, Scheduling and Expectancy Theory, Job characteristics model, job enrichment, job rotation, work modules, flex-time, new trends in work scheduling.

Unit4: Performance appraisal

[07 Hours]

Performance appraisal and expect ancy theory; appraisal process, appraisal methods, factors that can destroy appraisal. Rewarding the Productive Employee: Rewards and expectancy theory, typesof rewards, qualities of effective rewards, criterions for rewards.

Unit5:Maintenance of Human resources and Labor Relations

[07 Hours]

Compensation Administration: Concept of Compensation Administration, Job evaluation, Paystructures, Incentives compensation plans. Benefits and Services Benefits: Something for everybody, Services, Trends in benefits and services

.Discipline: Concept of Discipline, types of discipline problems, general guidelines, disciplinary

action, employment-at-will doctrine, disciplining special employee groups Safety and Health:safety programs, health programs, stress, turn out.

Unions, Major labor legislation, goals of group representation. Collective Bargaining: objectives , scope, participants of collective bargaining, process of collective bargaining, trends in collective bargaining Research and the future: What is research? Types of research, hyre searching human resource management, Secondary sources: where to look it up, Primary sources: relevant research methods, current trends and implications for humanresource management.

Texts:

- 1. David A. De Cenzo, StephenP. Robbins, "Personnel/Human Resources Management", Prentice Haof India Pvt. Ltd,3rd edition,2002.
- 2. Trevor Bolton, "An Introduction to Human Resource Management", Infinity Books, 2001.

References:

1. Ellen E. Kossek, "Human Resource

Management-

TransformingtheWorkplace",InfinityBooks,2001.

- 2. G.S. Batra, R.C. Dangwal, "Human Resource Management New Strategies", Deepand Deep Publications Pvt. Ltd., 2001.
- 3. D.M. Silvera, "HRD: TheIndianExperience", NewIndiaPublications, 2nd edition, 1990.

Product Design Engineering

BTMOE505D OEC1	Product Design Engineering – I	3-0-0	3 Credits
----------------	--------------------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3hr/Week	Continuous Assessment: 20
	MarksMid Semester Exam: 20
	Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

• Pre-requisites: Knowledge of Basic Sciences, Mathematics and Engineering Drawing

Course Outcomes: At the end of the course, students will be able to

- CO 01. Understand the need for product design
- CO 02. Apply various methods of idea generation
- CO 03. Understand various types of prototypes and testing methods
- CO 04. Understand the product economics at production scale
- CO 05. Appreciate the environmental concerns in product lifecycle

Course Contents:

Unit 1: Introduction to Engineering Product Design

[07 Hours]

Trigger for Product/Process/System, Problem solving approach for Product Design, Disassembling existing product(s) and understanding relationship of components with each other, identifying materials and their processing for final product, fitting of components, understanding manufacturing as scale of the components, Reverse engineering concept,

Unit 2: Ideation & Conceptualization

[07 Hours]

Generation of ideas, funneling of ideas, Short-listing of ideas for product(s) as an individual or group of individuals, Market research for need, competitions, Product architecture, Designing of components, Drawing of parts and synthesis of a product from its component parts, 3-D visualization,

Unit 3: Testing and Evaluation Prototyping:

Design Automation, Prototype testing and evaluation, Working in multidisciplinary teams, Feedback to design processes, Process safety and materials, Health and hazard of process operations.

Unit 4: Manufacturing

[07 Hours]

Design models and digital tools, Decision models, Prepare documents for manufacturing in standard format, Materials and safety data sheet, Final Product specifications sheet, Detail Engineering Drawings (CAD/CAM programming), Manufacturing for scale, Design/identification of manufacturing processes

Unit 5: Environmental Concerns

[07 Hours]

Product life-cycle management, Recycling and reuse of products, Disposal of product and waste. Case studies.

Reference:

1. Model Curriculum for "Product Design Engineer – Mechanical", NASSCOM (Ref. ID: SSC/Q4201, Version 1.0, NSQF Level: 7)

- 2. Eppinger, S., & Ulrich, K.(2015). Product design and development. McGraw-Hill Higher Education.
- 3. Green, W., & Jordan, P. W. (Eds.).(1999). Human factors in product design: current practice and future trends. CRC Press.
- 4. Sanders, M. S., & McCormick, E. J. (1993). Human factors in engineering and design. McGRAW-HILLbookcompany.
- 5. Roozenburg, N. F., & Eekels, J. (1995). Product design: fundamentals and methods (Vol. 2). John Wiley & Sons Inc.
- 6. Lidwell, W., Holden, K., & Butler, J.(2010). Universal principles of designs, revised and updated: 125 ways to enhance usability, influence perception, increase appeal, make better design decisions, and teach through design. Rockport Pub.

Applied Thermodynamics

BTMC506	PCC11	Applied Thermodynamics	3-0-0	4 Credits
---------	-------	------------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 0 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Define the terms like calorific value of fuel, stoichiometric air-fuel ratio, excess air, equivalent evaporation, boiler efficiency, etc. Calculate minimum air required for combustion of fuel.
CO2	Studied and Analyze gas power cycles and vapour power cycles and derive expressions for the performance parameters like thermal efficiency.
CO3	Classify various types of boilers, nozzle, steam turbine and condenser used in steam power plant.
CO4	Classify various types condenser, nozzle and derived equations for its efficiency.
CO5	Draw P-v diagram for single-stage reciprocating air compressor, with and without clearance volume, and evaluate its performance. Differentiate between reciprocating androtary air compressors.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1										
CO2	1	2										
CO3	1											
CO4			1									
CO5		2										

Course Contents:

Unit 1: Fuels and Combustion

[07 Hours]

Types of fuels, calorific values of fuel and its determination, combustion equation for hydrocarbon fuel, determination of minimum air required for combustion and excess air supplied conversion of volumetric analysis to mass analysis, fuel gas analysis.

Unit 2: Steam Generators

[07 Hours]

Classification of boilers, boiler details, requirements of a good boiler; merits and demerits of fire

tube and water tube boilers, boiler mountings and accessories.

Boiler Draught: Classification of draught, natural draught, efficiency of the chimney, draught

losses, types of boiler draught.

Performance of Boilers: Evaporation, equipment evaporation, boiler efficiency, boiler trial and heat balance, Introduction to IBR.

Unit 3: Vapor and Gas Power Cycles, Steam Nozzles

[07 Hours]

Ideal Rankine cycle, Reheat and Regeneration, Stirling cycle, Joule-Brayton cycle. Calculation of thermal efficiency, specific steam/fuel consumption, work ratio for above cycles.

Steam Nozzles: Types of Nozzles, flow of steam through nozzles, condition for maximum discharge, expansion of steam considering friction, super saturated flow through nozzles, General relationship between area, velocity and pressure.

Unit 4: Condensers, Cooling Towers and Steam Turbines

[07 Hours]

Condensers and Cooling Towers: Elements of steam condensing plants, advantages of using condensers, types of condensers, thermodynamic analysis of condensers, efficiencies, cooling towers.

Steam Turbines: Advantages and classification of steam turbines, compounding of steam turbines, velocity diagrams, work one done and efficiencies, losses in turbines.

Unit 5: Reciprocating Air Compressor

[07 Hours]

Classification constructional details, theoretical and actual indicator diagram, FAD, multi staging, condition for maximum efficiency, capacity control.

Rotary Compressor— Concepts of Rotary compressors, Root-blower and type compressors, Centrifugal compressors. Velocity diagram, construction and expression for work done, introduction to slip factor, power input factor.

Texts:

- 1. T. D. Eastop, A. McConkey, "Applied Thermodynamics", Addison Wesley Longman.
- 2. Rayner Joel, "Basic engineering Thermodynamics", Addison Wesley Longman.

References:

- 1. Yunus A. Cengel, "Thermodynamics- An Engineering Approach", Tata McGraw Hill Publications.
- 2. P. K. Nag, "Basic and Applied Thermodynamics", Tata McGraw Hill Publications.
- 3. P. K. Nag, "Power Plant Engineering", Tata McGraw Hill Publications, 2nd edition.
- 4. Sharma and Mathur, "Internal Combustion Engines", Tata McGraw Hill Publications.

Mechanical Engineering Lab – III

BTMCL 507	PCC 11	Heat Transfer Lab.+Theory of	0-0-6	3 Credit
-----------	--------	------------------------------	-------	----------

	Machines Lab II + Machine	
	Design Practice-I	

Practical Scheme:	Examination Scheme:					
Practical: 6 hrs/batch	Continuous Assessment: 60 Marks					
	External Exam: 40 Marks					

Group A (Heat Transfer Lab)

List of Practical's/Experiments/Assignments (Any Three from Group

- 1. Determination of thermal conductivity of a metal rod.
- 2. Determination of thermal conductivity of insulating powder.
- 3. Determination of conductivity of a composite slab.
- 4. Temperature is distribution on a fin surface.
- 5. Determination of film heat transfer coefficient for natural convection.
- 6. Determination of film heat transfer coefficient for forced convection.
- 7. Determination of heat transfer coefficient for cylinder in cross flow in forced convection.
- 8. Performance of Double pipe Heat Exchanger/Shell and Tube Heat Exchanger.
- 9. Determination of emissivity of a metal surface.
- 10. Determination of Stefan Boltzman's constant.
- 11. Determination of critical heat flux.
- 12. Calibration of measuring instruments pressure gauge, thermocouple, flow-meter etc.

Group B (Theory of Machines Lab - II)

Listof Practical's/Experiments/Assignments (Any Three from Group B)

Term work should consist of chosen experiments from the below given list.

- 1. Study of various types of gear boxes such as Industrial gear box, Synchromesh gear box, Differential gear box, etc.
- 2. To draw conjugate profile for any general shape of gear tooth
- 3. To generate gear tooth profile and to study the effects under cutting and rack shift using models
- 4. To draw cam profile for various types of follower motions
- 5. To study various types of lubricating systems
- 6. To study various types of dynamometers
- 7. To determine speed vs. lift characteristic curve of a centrifugal governor and to find its coefficient of insensitiveness and stability.
- 8. Verification of principle of gyroscope and gyroscopic couple using motorized gyroscope
- 9. Study of any tow gyro-controlled systems
- 10. To study the dynamic balancing machine and to balance a rotor such as a fan or the rotor of electric motor or disc on the machine

- 11. To determine the natural frequency of damped vibration of a single degree of freedom system and to find its damping coefficient
- 12. To verify natural frequency of torsional vibration of two rotor system and position of node
- 13. To determine critical speed of a single rotor system
- 14. To determine transverse natural frequency of a beam experimentally using frequency measurement setup
- 15. To determine the frequency response curve under different damping conditions for the single degree of freedom system
- 16. To study shock absorbers and to measure transmissibility of force and motion.
- 17. Study of epicyclic gear train and its dynamic behavior

Group C (Machine Design Practice – I)

List of Practical's/Experiments/Assignments

- The term work shall consist of 01 design projects based on syllabus of Machine Design-I.
 Design project shall consist of 2 full imperial size sheets-one involving assembly drawings
 with a part list and overall dimensions and other sheet involving drawings of individual
 components. Manufacturing tolerances, surface finish symbols and
 geometric tolerances should be specified, where ever necessary, so as to make it a working
 drawing.
 - Make the Project full on AutoCAD or on any 3D Design software print the full sheet on A3 size paper.
- 2. A design report giving all necessary calculations for the design of components and assembly should be submitted in a separate file. Sheets for one of the projects will be drawn using AutoCAD and computer print outs using plotter of the same will be attached along with the design report.
- 3. At least two assignments based on topics of syllabus of Machine Design-I.

IT – 2 Evaluation

BTMI408	IT – 2 Evaluation	PROJ-3	0L-0T-0P	1 Credits
(IT-2)				

Teaching Scheme:	Examination Scheme:
Lecture:	Continuous Assessment:
	Mid Semester Exam:
	End Semester Exam: 100 Marks

Semester - VI

Manufacturing Processes - II

BTMC 601	PCC12	Manufacturing Processes - II	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:						
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks						
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks						
	End Semester Exam: 60 Marks (Duration 03 hrs)						

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the process of powder metallurgy and its applications
CO2	Calculate the cutting forces in orthogonal and oblique cutting
CO3	Evaluate the machinability of materials
CO4	Understand the abrasive processes
CO5	Explain the different precision machining processes
CO6	Understanding plastic

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1			2					1
CO2	3	3										1
CO3	3	3	1	2	3							1
CO4	3	3	2									1
CO5	3	3	1	3								1
CO6	3	1	3	3	3			2				1

Course Contents:

Unit 1: Abrasive Machining and Finishing Operations

[07 Hours]

Introduction; Abrasives and Bonded Abrasives: Grinding Wheels, Bond Types, Wheel Grade and Structure; Grinding Process: Grinding-wheel wear, Grinding Ratio, Dressing, Truing and Shaping of Grinding Wheels, Grindability of Materials and Wheel Selection; Grinding Operations and Machines, Finishing Operations

Unit 2: Mechanics of Metal Cutting

[07 Hours]

Geometry of single point cutting tools, terms and definitions; chip formation, forces acting on the cutting tool and their measurement; specific cutting energy; plowing force and the "size effect"; mean shear strength of the work material; chip thickness: theory of Ernst and merchant, theory of Lee and Shaffer.

Unit 3: Thermal aspects, Tool wear, and Machinability

[07 Hours]

Temperature in Metal Cutting: Heat generation in metal cutting; temperature distribution in metal cutting, effect of cutting speed on temperatures, measurement of cutting temperatures **Tool life and tool Wear:** progressive tool wear; forms of wear in metal cutting: crater wear, flank wear, tool-life criteria.

Cutting tool materials: Basic requirements of tool materials, major classes of tool materials: high-speed steel, cemented carbide, ceramics, CBN and diamond, tool coatings; use of cutting fluid.

Unit 4: Processing of Powder Metals

[07 Hours]

Introduction; Production of Metal Powders: Methods of Powder Production, Particle Size, Shape, and Distribution, Blending Metal Powders; Compaction of Metal Powders: Equipment, Isostatic Pressing, Sintering; Secondary and Finishing Operations.

Unit 5: Processing of Plastics Ceramics and Glasses

[07 Hours]

Plastics: Introduction; Extrusion: Miscellaneous Extrusion Processes, Production of Polymer Reinforcing Fibers; Injection Molding: Reaction-injection Molding; Blow Moulding; Rotational Moulding; Thermoforming; Compression Moulding; Transfer Moulding; Casting; Foam Moulding; Cold Forming and Solid-phase Forming; Processing Elastomers.

Texts:

- 1. Serope Kalpakjian and Steven R. Schmid, "Manufacturing Engineering and Technology", Addison Wesley Longman (Singapore) Pte. India Ltd., 6thedition, 2009.
- 2. Geoffrey Boothroyd, Winston Knight, "Fundamentals of Machining and Machine Tools", Taylor and Francis, 3rd edition, 2006.

- 1. Milkell P. Groover, "Fundamentals of Modern Manufacturing: Materials, Processes, and Systems", John Wiley and Sons, New Jersey, 4th edition, 2010.
- 2. Paul De Garmo, J. T. Black, Ronald A. Kohser, "Materials and Processes in Manufacturing",

Wiley, 10th edition, 2007.

3. M. C. Shaw, "Theory of Metal Cutting", Oxford and I.B.H. Publishing, 1st edition, 1994.

Machine Design - II

BTMC 602 PCC13	Machine Design - II	3-1-0	4 Credits
----------------	---------------------	-------	-----------

Teaching Scheme:	Examination Scheme:						
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks						
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks						
	End Semester Exam: 60 Marks (Duration 03 hrs)						

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Define function of bearing and classify bearings.
CO2	Understanding failure of bearing and their influence on its selection.
CO3	Classify the friction clutches and brakes and decide the torque capacity and friction disk parameter.
CO4	Select materials and configuration for machine element like gears.
CO5	Design of elements like gears, belts for given power rating

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1						1				1
CO2	3	2		1		1		1		1		1
CO3	1	1				1		1		1		1
CO4	3	3	2	1		2		1		1		1
CO5	1	1				1		1		1		1

Course Contents:

Unit1: Rolling Contact Bearings [07 Hours]

Types, Static and dynamic load carrying capacities, Stribeck's Equation, Equivalent load, load and life relationship, selection of bearing life, Load factor, selection of bearing from manufacturer's catalogue, Taper roller bearings and their selection, Cyclic loads and speeds, Design for probability of survivalotherthan 90% Lubrication and mountings of rolling contact bearings.

Unit2: Spur Gear [07 Hours]

Gear drives, Classification of gears, Law of gearing, Terminology of spur gear, Standard system of gear tooth force analysis, gear tooth failures, Selection of materials Constructional, Number of teeth, Face with, Beams strength equation, Effective load on gear tooth, Estimation of module based on beams strength. Design for maximum power capacity, Lubrication of gears.

Helical Gears: Terminology, Virtual number of teeth, Tooth proportions, Force analysis, Beam strength equation, Effective load on gear tooth Wear strength equation.

Unit3: Bevel Gears [07 Hours]

Types of bevel gears, Terminology of straight bevel, force analysis, Beam and Wear strength, Effective load on gear tooth.

Worm Gears: Terminology, Proportions, Force analysis, Friction in worm gears, Vector method, Selection of materials, Strength and wear rating, Thermal considerations

Unit4: Belt and Flywheel

[07 Hours]

Flat and V belts, Geometric relationship, analysis of belt tensions, condition for maximum power, Selection of flat and V belts from manufacturer's catalogue, Adjustment of belt tensions. Roller chains, Geometric relationship, polygonal effect.

Flywheel: Introduction, types of flywheels, stresses in disc and armed flywheel.

Unit5: Brakes, Clutches

[07 Hours]

Types of clutches, torque capacity, single and multi-plate clutches, cone clutch, centrifugal clutch, friction materials.

Types of brakes, energy equation, block with shoe brake, pivoted brake with long shoe, internal expanding shoe brake, thermal considerations.

Texts:

- 1. V. B. Bhandari, "Design of machine Elements", Tata McGraw Hill Publications, New Delhi, 1998
- 2. R. L. Nortan, "Machine Design: An Integrated Approach", Pearson Education.

- 1. J.E. Shigley, C.Mischke, "Mechanical Engineering Design", TataMcGraw Hill Inc, NewYork,6thedition, 2003.
- 2. R. C. Juvinall, K. M. Marshek, "Fundamentals of Machine Component Design", John Wiley&Sons, Inc,NewYork,2002.

IC Engines

BTMPE603A	PEC3	IC Engines	3-0-0	3Credits
-----------	------	------------	-------	----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Applied Thermodynamics – I

Course Outcomes: At the end of the course, students will be able to

CO1	Understand various types of I.C. Engines and Cycles of operation.
CO2	Analyze the effect of various operating variables on engine performance
CO3	Identify fuel metering and fuel supply systems for different types of engines
CO4	Understand normal and abnormal combustion phenomena in SI and CI engines
CO5	Evaluate performance Analysis of IC Engine and Justify the suitability of IC Engine for different application
CO6	Understand the conventional and non-conventional fuels for IC engines and effects of emission formation of IC engines, its effects and the legislation standards

Mapping of course outcomes with program outcomes

Course	Program Outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3						3					
CO2		2										
CO3	2											
CO4	2											
CO5					2		3					
CO6	2											

Course Contents:

Unit 1: Fundamentals of IC Engines

[07 Hours]

Applications, nomenclature, engine components, Engine classification, two and four stroke cycle

engines; fundamental difference between SI and CI engines; valve timing diagrams.

Power Cycles: Air standard Otto, Diesel and Dual cycles; Valve timing diagrams, Fuel-Air cycles and deviation of actual cycles from ideal cycles.

Unit 2: Combustion [07 Hours]

Introduction, important qualities and ratings of SI Engines fuels; qualities and ratings of CI Engine fuels.

Combustion in S.I. Engines, flame speed, ignition delay, normal and abnormal combustion, effect of engine variables on flame propagation and ignition delay, Combustion in C.I. Engines, combustion of a fuel drop, stages of combustion, ignition delay, combustion knock; types of SI and CI Engine combustion chambers.

Unit 3: Various Engine Systems and Engine Testing and Performance [07 Hours]

Starting systems, fuel supply systems, engine cooling system, ignition system, engine friction and lubrication systems, governing systems.

Engine Testing and Performance of SI and CI Engines

Parameters, Type of tests and characteristic curves.

Super charging in IC Engine: Effect of attitude on power output, types of supercharging.

Engine Emissions and control: Pollutants from SI and CI engines and their control, emission regulations such as Bharat and Euro.

Unit 4: Alternate fuels [07 Hours]

Need for alternative fuels, applications, various alternate fuels etc

Gaseous Fuels, Alcohols, Biodiesels, vegetable oil extraction, Trans-esterification process, properties of alternative fuels and fuel blends.

Fuel Cell Technology: Operating principles, Types, construction, working, application, advantages and limitations.

Unit 5: Layout of Electric vehicle and Hybrid vehicles

[07 Hours]

Advantages and drawbacks of electric and hybrid vehicles, System components, Electronic control system – Different configurations of Hybrid vehicles, Power split device. High energy and power density batteries – Basics of Fuel cell vehicles

Texts References:

- 1. V. Ganeshan, "Internal Combustion Engines", Tata McGraw Hill Publications, New Delhi, 3rd edition.
- 2. J. B. Heywood, "Internal Combustion Engine Fundamentals", Tata McGraw Hill Publications, New York, International Edition, 1988.
- 3. "Alternative Fuels", Dr. S. S. Thipse, Jaico publications.
- 4. "IC Engines", Dr. S. S. Thipse, Jaico publications.
- 5. "Engine Emissions, pollutant formation", G. S. Springer and D.J. Patterson, Plenum Press.
- 6. ARAI vehicle emission test manual.
- 7. Gerhard Knothe, Jon Van Gerpen, Jargon Krahl, "The Biodiesel Handbook", AOCS Press
- 8. Champaign, Illinois 2005.
- 9. Richard L Bechtold P.E., Alternative Fuels Guide book, Society of Automotive Engineers,
- 10. 1997, ISBN 0-76-80-0052-1.

Transactions of SAE on Biofuels (Alcohols, vegetable oils, CNG, LPG, Hydrogen, Biogas etc.

Mechanical Vibration

BTMPE603B	PEC3	Mechanical Vibration	3-0-0	Credits
-----------	------	----------------------	-------	---------

Teaching Scheme:	Examination Scheme:						
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks						
	Mid Semester Exam: 20 Marks						
	End Semester Exam: 60 Marks (Duration 03 hrs)						

Pre-Requisites: Theory of Machines - II

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the cause and effect of vibration in mechanical system
CO2	Formulate governing equation of motion for physical system
CO3	Understand role of damping, stiffness and inertia in mechanical system
CO	Analyze rotating system and calculate critical speeds
CO5	Estimate the parameters of vibration isolation system
CO6	Estimate natural frequencies and mode shapes of continuous system

Mapping of course outcomes with program outcomes

Course	Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	2	1	1					2
CO2	3	3	2	1	1							2
CO3	3	2	2	1	1							2
CO4	3	3	2	2	2							2
CO5	3	3	2	2	2		3					2
CO6	3	3	3	2			•					2

Course Contents:

Unit 1: Single DOF- Free Vibrations

[07 Hours]

Basic concepts: Causes and effect of vibrations, practical applications, harmonic and periodic motions, vibration terminology, vibration model, Equation of motion -natural frequency, Energy

method, Rayleigh method, principle of virtual work, damping model, viscously damped free vibration, Oscillatory, non-oscillatory and critically damped motions, logarithmic decrement. Coulomb's damping.

Unit 2: Single DOF- Forced Vibrations

[07 Hours]

Analysis of linear and torsional system subjected to harmonic force excitation, force transmissibility, Magnification factor, motion transmissibility, vibration isolation, typical isolator and mounts, critical speed of single rotor, undamped and damped.

Unit 3: Two DOF Systems

[07 Hours]

Introduction, formulation of equation of motion, equilibrium method, lagrangian method, free vibration response, Eigen values and eigen vector, Normal mode and mode superposition, Coordinate coupling, decoupling equation of motion.

Unit 4: Torsional Vibration

[07 Hours]

Simple system with one or two rotor masses, Multi DOF system: transfer matrix method, gearedsystem, and branched system.

Unit 5: Multi Degree of Freedom System and Continuous Systems

[07 Hours]

Formulation of equation of motion, free vibration response, natural mode and mode shapes, orthogonality of model vectors, normalization of model vectors, decoupling of modes, model analysis, mode superposition technique. Free vibration response through model analysis. DF

Continuous Systems

Vibration of strings, longitudinal and transverse vibration of rods, transverse vibrations of beams, equation of motions and boundary conditions, transverse vibration of beams, natural frequencies and mode shapes.

Texts:

1. L. Meirovich, "Elements of Vibration Analysis", Tata McGraw Hill.

- 1. S. S. Rao, "Mechanical Vibrations", Pearson education.
- 2. W. T. Thompson, "Theory of Vibration", CBS Publisher.

Machine Tool Design

BTMPE603C PF	EC3 Machine Too	l Design 3-0-0	3Credits
--------------	-----------------	----------------	----------

Teaching Scheme:	Examination Scheme:
Lecture: 2 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Machine design and Manufacturing processes-I

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand basic motion involved in a machine tool.
CO2	Design machine tool structures for conventional and CNC machines.
CO3	Design and analyze system for specified speeds and feeds.
CO4	Understand control strategies for machine tool operations.
CO5	Design of rotary and linear drive for machine tools.
CO6	Analyze machine tool structure for design accuracy.

Mapping of course outcomes with program outcomes

Course					Pr	ogram	Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	1	1				1	1	1
CO2	3	1	3	1	2	1	1		1	1	1	1
CO3	2	1	2	1	1	1			1	1	1	1
CO4	2	1	1	1	1	1	1			1	1	1
CO5	3	1	3	1	1	1	1		1	1	1	1
CO6	2	1	2	1	1	1	1		1	1	1	1

Course Contents:

Unit 1: Introduction [07 Hours]

Kinematics of different types of machine tools, selection of cutting conditions and tools, calculations of cutting force on single point and multipoint tools, hole machining, calculation of

power, accuracy requirements and standards.

Unit 2: Design of Rotary Drives

[07 Hours]

Design of spindle drives, AC motors with stepped drive, DC and AC variable speed drive motor characteristics and selection, principle of speed controllers, timing belts and other types of transmission belting, closed loop operation of mail drives, rotary indexing drives.

Unit 3: Design of Feed Drives

[07 Hours]

Feed drive using feed boxes, axes feed drive of CNC drives, DC and AC servomotors, characteristics controllers and their selection, Ball screws and friction guide ways, linear motion systems, design calculation of drives, closed loop operations of feed drive, linear indexing drives.

Unit 4: Control Elements

[07 Hours]

Single and multi-axis CNC controllers, hydraulic control, Pneumatic control limit switches, proximity switches, sequencing control using hardwired and PLC systems.

Design of machine tool structures: Static and dynamic stiffness, dynamic analysis of cutting process, stability, forced vibration, ergonomics and aesthetics in machine tool design.

Unit 5: Design of Spindle and Spindle Supports and Design of Special Purpose Machines[07 Hours]

Function of spindles, design requirements, standard spindle noses, design calculation of spindles, bearing selection and mounting.

Finite elements analysis of machine tool structures: Examples of static, dynamic and thermal analysis and optimization of typical machine tool structure like column and using a finite element analysis package.

Design of Special Purpose Machines

Modular design concepts, standard modules, example of design of typical SPM with CNC, transfer machines.

Texts:

- 1. N. K. Mehta, "Machine Tool Design", Tata McGraw Hill Book Co., 1991.
- 2. P.C. Sharma, "A Textbook of Machine Tools and Tool Design", S. Chand & Co. Ltd., 1 January 2005.
- 3. Sen and Bhattacharya, "Principles of Machine Tools", 1 Jan 2009.
- 4. Yoram Koren, "Computer control of manufacturing systems", Tata McGraw Hill Education, 2009.

References:

- 1. Aacherkan, "Machine Tool Design", Vol. I and Vol. III, Mir Publishers, Moscow, 1970.
- 2. W. L. Cheney, "Details of Machine Tool Design (Classic Reprint)", Forgotten Books, 20 Sep 2016.
- 3. Central Machine Tool Institute, "Machine Tool Design Handbook", Tata McGraw Hill Education, 1st Edition, 16 June 2001.
- 4. Nicholas Lisitsyn, Alexis V Kudryashov, Oleg Trifonov, Alexander Gavryusin, N Acherkan, Nicholas Weinstein, "Machine Tool Design", Vol. I, University Press of the Pacific, 20 April 2000.

Engineering Metrology and Quality Control

BTMPE603D	PEC 3	Metrology and Quality Control	3-0-0	3 Credits
211.11 20002		1.1001018) 4114 244110) 20111101		0 0100100

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Identify techniques to minimize the errors in measurement
CO2	Identify methods and devices for measurement of length, angle, and gear and thread parameters, surface roughness and geometric features of parts.
CO3	Choose limits for plug and ring gauges.
CO4	Explain methods of measurement in modern machineries
CO5	Select quality control techniques and its applications
CO6	Plot quality control charts and suggest measures to improve the quality of product and reduce cost using Statistical tools.

Mapping of course outcomes with program outcomes

Course					P	rogram	Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				3								2
CO2		2	2		2							
CO3			2	3	2							
CO4						3						
CO5	1					2		3	3		3	2
CO6	1					2		3	3		2	2

Course Contents:

Unit 1: Measurement Standard and Comparators

[07 Hours]

Measurement Standard, Principles of Engineering Metrology, Line end, wavelength, Traceability of Standards. Types and Sources of error, Alignment, slip gauges and gauge block, Linear and Angular Measurement (Sine bar, Sine center, Autocollimator, Angle Décor and Dividing head), Calibration. Comparator: Mechanical, Pneumatic, Optical, Electronic (Inductive), Electrical

(LVDT).

Unit 2: Interferometry and Limits, Fits, Tolerances

[07 Hours]

Principle, NPL Interferometer, Flatness measuring of slip gauges, Parallelism, Laser Interferometer, Surface Finish Measurement: Surface Texture, Measuring Surface Finish by Stylus probe, Tomlinson and Talysurf, Analysis of Surface Traces: Methods.

Design of Gauges: Types of Gauges, Limits, Fits, Tolerance; Terminology for limits and Fits. Indian Standard (IS 919-1963) Taylor's Principle.

Unit 3: Metrology of Screw Thread

[07 Hours]

Gear Metrology: Gear error, Gear measurement, Gear Tooth Vernier; Profile Projector, Tool marker's microscope. Advancements in Metrology: Co-ordinate Measuring Machine, Universal Measuring Machine, Laser in Metrology.

Unit 4: Introduction to Quality and Quality Tools

[07 Hours]

Quality Statements, Cost of Quality and Value of Quality, Quality of Design, Quality of Conformance, Quality of Performance, Seven Quality Tools: Check sheet, Flow chart, Pareto analysis, cause and effect diagram, scatter diagram, Brain storming, Quality circles.

Unit 5: Total Quality Management and Statistical Quality Control

[07 Hours]

Quality Function Deployment, 5S, Kaizan, Kanban, JIT, Poka yoke, TPM, FMECA, FTA, Zero defects.

Statistical Quality Control: statistical concept, Frequency diagram, Concept of Variance analysis, Control chart for variable & attribute, Process Capability.

Acceptance Sampling: Sampling Inspection, sampling methods. Introduction to ISO 9000: Definition and aims of standardizations, Techniques of standardization, Codification system.

Texts:

- 1. I. C. Gupta, "Engineering Metrology", Dhanpat and Rai Publications, New Delhi, India.
- 2. M. S. Mahajan, "Statistical Quality Control", Dhanpat and Rai Publications.

References:

- 1. R. K. Jain, "Engineering Metrology", Khanna Publications, 17th edition, 1975.
- 2. K. J. Hume, "Engineering Metrology", McDonald Publications, 1st edition, 1950.
- 3. A. W. Judge, "Engineering Precision Measurements", Chapman and Hall, London, 1957.
- 4. K. L. Narayana, "Engineering Metrology", Scitech Publications, 2nd edition.
- 5. J. F. Galyer, C. R. Shotbolt, "Metrology for Engineers", Little-hampton Book Services Ltd., 5th edition, 1969.
- 6. V. A. Kulkarni, A. K. Bewoor, "Metrology & Measurements", Tata McGraw Hill Co. Ltd., 1st edition, 2009.
- 7. AmitavaMitra, "Fundamental of Quality Control and Improvement", Wiley Publication.
- 8. V. A. Kulkarni, A. K. Bewoor, "Quality Control", Wiley India Publication, 01st August, 2009.

- 9. Richard S. Figliola, D. E. Beasley, "Theory and Design for Mechanical Measurements", Wiley India Publication.
- 10. E. L. Grant, "Statistical Quality Control", Tata McGraw Hill Publications.
- J. M. Juran, "Quality Planning and Analysis", Tata McGraw Hill Publications.

Advance Automobile Design

BTAPE603C	PEC3	Automobile Body Design	3-0-0	3Credits
-----------	------	------------------------	-------	----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

Course Contents:

Domain Related Training

Unit 1: [07 Hours]

BIW: Requirement Specification in the Pre-Program Stage, Product Life Cycle & Important Gateways for BIW, Identification of Commodities for BIW, Design Concept & Considerations in BIW, BIW Materials & Grades, GD & T for BIW.

Unit 2: [07 Hours]

Sheet Metal Joining – Welds, Adhesives, TWBs. DFMEA, Design Verification – CAE Methods & Gateway supports Part A& B, CAE Analysis – NVH, Crash & Durability, Test Validation & Assessment.

Unit 3: [07 Hours]

Manufacturing – Sequence, Welding & Assembly, Future Trends in BIW, BIW: Examples & Case Studies

Unit 4: [07 Hours]

Trims: Requirement Specification in the Pre-Program Stage, Product Life Cycle & Important Gateways for Trims, Identification of Commodities for Trims, Design Requirements & Considerations, Trim Materials in Automotive.

Unit 5: [07 Hours]

Design of Plastic Part, DFMEA, Design Verification – CAE Methods & Gateway supports, CAE Analysis – Moldflow, Crash & Durability, Test Validation & Assessment

Manufacturing Process, Assembly Sequence, Future Trends & Future Material for Trims, Trims: Examples & Case Studies

Texts:

- 1. Notes of TATA Technologies
- 2. Curt Larson, "Datum Principles: Flexible Parts: Applications for Automotive Body-in-White and Interior Trim (Dimensional Management Series Book 1)", Right Tech, Inc., Kindle Edition.
- 3. Curt Larson, "Datum Principles: Flexible Parts: Applications for Automotive Body-in-White and Interior Trim (Dimensional Management Series Book 2)", Right Tech, Inc., Kindle Edition.

References:

- 1. Vukato Boljanovic, "Sheet Metal Forming Processes and Die Design", Industrial press Inc., Kindle Edition.
- 2. R. D. Cook, Concepts and Applications of Finite Element Analysis; John Wiley and Sons, second edition, 1981.
- 3. K.J. Bathe, Finite Element Method and Procedures; Prentice hall, 1996.
- 4. Ibrahim Zeid, "CAD/CAM Theory and Practice", Tata McGraw Hill Publication,
- 5. J. H. Dubois And W. I. Prebble, *Plastics Mold Engineering Handbook*, Van Nostr and Reihnhold, New York, 1987.
- 6. Geoffrey Boothroyd, Peter Dewhurst and Winston Knight, Product Design for Manufacturing and Assembly, 2nd Edition
- 7. C. Howard, *Modern Welding Technology*, Prentice Hall, 1979.
- 8. Jesper Christensen and Christophe Bastien, "Nonlinear Optimization of Vehicle Safety Structures: Modeling of Structures Subjected to Large Deformations, Butterworth-Heinemann, Kindle Edition
- 9. Grieves, Michael, Product Lifecycle Management, McGraw-Hill, 2006. ISBN 0071452303
- 10. Stark, John. Product Lifecycle Management: Paradigm for 21st Century Product Realization, Springer Verlag, 2004. ISBN 1852338105

E Vehicles

DIALEOUSE Levelles Let 3 SL-01-01 Scients	BTAPE603E	E Vehicles	PEC 3	3L-0T-0P	3 Credits
---	-----------	------------	-------	----------	-----------

Teaching Scheme:	Examination Scheme:
	Continuous Assessment: 20 Marks
Lecture: 3 hrs/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to

Course Contents:

Unit I: Introduction to EV:

[07 Hours]

Past, Present & Feature of EV, Current Major Issues, Recent Development Trends, EV Concept, Key EV Technology, State-of-the Art EVs, Comparison of EV Vs IC Engine.

Unit II: EV System:

[07 Hours]

EV Configuration: Fixed & variable gearing, single & multiple motor drive, In-wheel drives

EV Parameters:

Weight, size, force, energy & performance parameters.

Unit III: EV Propulsion:

[07 Hours]

Electric Motor:

Choice of electric propulsion system, block diagram of EV propulsion system, concept of EV Motors, single motor and multi-motor configurations, fixed & variable geared transmission, Inwheel motor configuration, classification of EV motors, Electric motors used in current vehicle applications, Recent EV Motors, Comparison of Electric Motors for EV applications

Required Power Electronics & Control:

Comparison of EV power devices, introduction to power electronics converter, four quadrant DC chopper, three-phase full bridge voltage-fed inverter, soft-switching EV converters, comparison of

hard-switching and soft-switching converter, three-phase voltage-fed resonance dc link inverter, Basics of Microcontroller & Control Strategies

Unit IV: EV Motor Drive:

[07 Hours]

DC Motor: Type of wound-field DC Motor, Torque speed characteristics

DC-DC Converter, two quadrant DC Chopper, two quadrant zero voltage transition converter-fed dc motor drive, speed control of DC Motor

Induction Motor Drive: Three Phase Inverter Based Induction Motor Drive, Equal Area PWM, Three Phase Auxiliary resonant snubber (ARS) Inverter Type (ZVC & ZCS), Single Phase ARS Inverter Topology, Speed Control of Induction Motor, FOC, Adaptive Control, Model Reference Adaptive Control (MARS), Sliding mode Control,

Unit V: Energy Sources & Charging:

[07 Hours]

Different Batteries and Ultracapacitors, Battery characteristics (Discharging & Charging) Battery Chargers: Conductive (Basic charger circuits, Microprocessor based charger circuit.

Arrangement of an off-board conductive charger, Standard power levels of conductive chargers, Inductive(Principle of inductive charging, Soft-switching power converter for inductive charging), Batteryindication methods

Charging Infrastructure: Domestic Charging Infrastructure, Public Charging Infrastructure, Normal Charging Station, Occasional Charging Station, Fast Charging Station, Battery Swapping Station, Move-and-charge zone.

References:

- 1. C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc., New York 2001
- 2. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003.
- 3. Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.
- 4. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.

Process Equipment Design

BTMPE604A PEC4	Process Equipment Design	3-0-0	Credits
----------------	--------------------------	-------	---------

Teaching Scheme:	Examination Scheme:
Lecture: 2 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the factors influencing design of pressure vessel
CO2	Calculate thickness and thickness variation for cylindrical storage tank
CO3	Estimation of thickness for thin and thick wall pressure vessels
CO4	Design of flange and gasket selection for cylindrical pressure vessels
CO5	Selection of various blade and baffle arrangement for agitators
CO6	Design of support for horizontal and vertical vessel

		<u> </u>										
Course					Pı	rogram	Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1		1			1	1	1				1
CO2	2	2	1			1	1	1				1
CO3	2	2	2			1	1	1				1
CO4	2	2	2			1	1	1				1
CO5	2	2	1			1	1	1				1
CO6	2	2	2			1	1	1				1

Course Contents:

Unit 1: Design Considerations for Pressure Vessel

[07 Hours]

Selection of type of vessel, Methods of fabrication, Effect of fabrication methods, various criteria in vessel design, Economic considerations, Types of process equipment, Constructional requirement and applications. Fabrication and testing, Inspection and non-destructive testing of equipment.

Unit 2: Storage Vessel

[07 Hours]

[07 Hours]

Design methods of atmospheric storage vessel: storage of fluids, storage of non-volatile liquids, storage of volatile liquids, storage of gases, Optimum tank proportion, Bottom design, Shell design, Wind girder for open top tank, Rub curb angle, Self-supported roof, Design of rectangular tank,

Unit 3: Pressure Vessel

Unfired process vessel with internal and external pressure, Operating condition, Selection of material, Design condition, Stresses, Design criteria, Design of shell subjected to internal and external pressure, cylindrical vessel under combined loading,

Design of heads and closures: flat head and formed heads for vessel. Design consideration for rectors and chemical process vessels. Flange facings, Gaskets, Design of flanged joint, Flange thickness, and Blind flanges.

Unit 4: High Pressure Vessel

[07 Hours]

Design of thick-walled high-pressure vessel, Constructional features, Materials for high-pressure vessels, Multilayer vessel with shrink fit construction, Thermal expansion for shrink fitting, stress in multi shell or shrink fit construction, autofrettage, Pre-stressing. Tall vessels and their design, Stress in shell, Determinations of longitudinal stresses, Longitudinal bending stresses due to eccentric loads, Determination of resultant longitudinal stresses.

Unit 5: Agitated Vessel and Support for Pressure Vessel

[07 Hours]

Type of agitators, Baffling, Power requirement for agitation, Design based on torque and bending moment, Design based on critical speed, Blade design, Hub and key design, Stuffing box and gland design, Turbine agitator design,

Support for Pressure Vessel

Bracket or lug support: Thickness of the base plate, Thickness of web (gusset) plate, Column support for bracket base plate for column or leg support. Skirt Support: Skirt design, Skirt bearing plate, and Anchor bolt design, Design of bolting chair. Saddle Support: Longitudinal bending moment, Stresses in shell at saddle.

Texts:

- 1. V. V. Mahajani, S. B. Umarji, "Process Equipment Design", Macmillan Publisher India Ltd.
- 2. L. E. Brownell, E. H. Young, "Process equipment design", John Wiley and Sons.
- 3. C. Bhattacharya, "Introduction to process Equipment Design".

Reference Book:

- 1. Dennis Moss, "Pressure Vessel Design Manual", Elsevier.
- 2. John F. Harvey, "Theory and Design of Pressure Vessels", CBS Publication

Product Life Cycle Management

BTMPE604B PEC4 Product Life Cycle Management	3-0-0	3Credits
--	-------	----------

Teaching Scheme:	Examination Scheme:
L L ACTURA: 3 hrc/WAAV	Continuous Assessment: 20 Marks Mid Semester Exam: 20 Marks End Semester Exam: 60 Marks (Duration 03 hrs)

Objectives: Establishing industry partnerships that guide, support, and validate PLM research and education activities assisting with the integration of PLM into College curricula and facilitating the PLM career opportunities.

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Outline the concept of PLM.
CO2	Illustrate the PDM system and its importance.
CO3	Illustrate the product design process.
CO4	Build the procedure for new product development.
CO5	Classify and compare various technology forecasting methods.
CO6	Outline the stages involved in PLM for a given product.

Course Outcomes	Program Outcomes											
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1				1						1	
CO2	1				1		1				1	
CO3	1		1		1							
CO4	1		1		1						1	

CO5	1		1	1			
CO6	1		1		1		1

Course Contents:

Unit 1: Introduction and strategies to PLM

[07 Hours]

Need for PLM, opportunities and benefits of PLM, different views of PLM, components of PLM, phases of PLM, PLM feasibility study, PLM visioning, Industrial strategies, strategy elements, its identification, selection and implementation, change management for PLM.

Unit 2: Product Data Management (PDM)

[07 Hours]

Human resources in product lifecycle, Information, Standards, Vendors of PLM Systems and Components, PDM systems and importance, reason for implementing a PDM system, financial Justification of PDM, barriers to PDM implementation

Unit 3: Product Design

[07 Hours]

Engineering design, organization and decomposition in product design, product design process, methodical evolution in product design, concurrent engineering, design for 'X' and design central development model. Strategies for recovery at end of life, recycling, human factors in product design. Modeling and simulation in product design.

Unit 4: New Product Development

[07 **Hours**]

Structuring new product development, building decision support system, Estimating market opportunities for new product, new product financial control, implementing new product development, market entry decision, launching and tracking new product program, Concept of redesign of product

Unit 5: Technology Forecasting and PLM Software and Tools

[07 Hours]

Future mapping, invocating rates of technological change, methods of technology forecasting such as relevance trees, morphological methods and mission flow diagram, combining forecast of different technologies, uses in manufacture alternative.

PLM Software and Tools

Product data security. Product structure, workflow, Terminologies in workflow, The Link between Product Data and Product Workflow, PLM applications, PDM applications.

Texts/References:

- Grieves, Michael, "Product Lifecycle Management", Tata McGraw-Hill, 2006, ISBN 007145230330.
- 2. Antti Saaksvuori, Anselmi Immonen, "Product Life Cycle Management", Springer, 1st edition, 2003.
- 3. Stark, John, "Product Lifecycle Management: Paradigm for 21stCentury Product Realization", Springer-Verlag, 2004.
- 4. Fabio Giudice, Guido La Rosa, "Product Design for the environment-A life cycle approach", Taylor & Francis, 2006.
- 5. Robert J. Thomas, "NPD: Managing and forecasting for strategic processes".

Finite Element Method

BTMPE604C PI	EC4 Finite Element Method	3-0-0	3Credits
--------------	---------------------------	-------	----------

Teaching Scheme:	Examination Scheme:
Lecture: 3hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the basic principle of Finite element methods and its applications
CO2	Use matrix algebra and mathematical techniques in FEA
CO3	Identify mathematical model for solution of common engineering problem
CO4	Solve structural, thermal problems using FEA
CO5	Derive the element stiffness matrix using different methods by applying basic mechanics laws
CO6	Understand formulation for two- and three-dimensional problems

Course		Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	1	1		1				1		1	1	
CO2	2	3	2	1	2	1		1			2	1	
CO3	3	2	2	1	1				1		2	1	
CO4	3	3	2	1	2		1		1		2	1	

CO5	3	1	1	1	1		2	1
CO6	1	1	1			1	1	1

Course Contents:

Unit 1: Introduction [07 Hours]

Finite element analysis and its need, Advantages and limitations of finite element analysis (FEA), FEA procedure.

Unit 2: Elements of Elasticity

[07 **Hours**]

Stress at a point, Stress equation of equilibrium, 2-D state of stress, Strains and displacements, Stress-strain relationship for 2-D state of stress, Plane stress and plane strain approach.

Unit 3: Relevant Matrix Algebra

[07 Hours]

Addition, subtraction and multiplication of matrices, Differentiation and integration of matrices, Inverse of a matrix, Eigen values and eigen vectors, Positive definite matrix, Gauss elimination.

Unit 4: One-Dimensional Problems

[07 Hours]

Introduction, FE modeling, Bar element, Shape functions, Potential energy approach, Global stiffness matrix, Boundary conditions and their treatments, Examples.

Unit 5: Trusses and Frames and Two-dimensional Problems

[07 Hours]

Introduction, Plane trusses, Element stiffness matrix, Stress calculations, Plane frames, examples.

Two-dimensional Problems

Introduction and scope of 2-D FEA, FE modeling of 2-D problem, Constant strain triangle, other finite elements (no mathematical treatment included), Boundary conditions.

Texts:

- T. R. Chandrupatla, A.D. Belegundu, "Introduction to Finite Elements in Engineering", Prentice Hall of India Pvt. Ltd., 3rd edition, New Delhi, 2004.
- P. Seshu, "A Textbook of Finite Element Analysis", Prentice Hall of India Pvt. Ltd., New Delhi, 2003.
- R. D. Cook, D. S. Malkus, M. E. Plesha, R. J. Witt, "Concepts and Applications of Finite Element Analysis", John Wiley &Sons, Inc.

References:

K. J. Bathe, "Finite Element Procedures", Prentice Hall of India Pvt. Ltd., 2006.

Robotics

BTMPE604D	PEC4	Robotics	3-0-0	3 Credits
-----------	------	----------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	List the various components of a typical Robot, grippers, sensors, drive system and describe their functions
CO2	Calculate the word to joint and joint to word coordinates using forward and reverse transformations
CO3	Calculate the gripper forces, drive sizes, etc.
CO4	Develop simple robot program for tasks such as pick and place, arc welding, etc. using some robotic language such as VAL-II, AL, AML, RAIL, RPL, VAL
CO5	Evaluate the application of robots in applications such as Material Handling, process operations and Assembly and inspection
CO6	Discuss the implementation issues and social aspects of robotics

Course		Program Outcomes											
Outcomes	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 P											
CO1	1	1	1		1				3	1			
CO2	2	3	2	1	2	1			3	2			
CO3	3	2	2	1	1				3	2			

CO4	3	3	2	1	2	1	3	2	
CO5	3	1	1		1	1	3	2	
CO6	1	1	1				3	2	

Course Contents:

Unit 1: Introduction

Various basic components of a Robotic system, various configurations, work envelopes, Manipulators, Controllers, etc., Parameters [07 Hours]

Unit2: Mechanical Systemin Robotics

Motion conversion, Kinematic chains, position analysis, forward and reverse transformations, natural and joint space coordinates, homogeneous transformation and robot kinematics, Manipulator path control, Robot Dynamics.

[07 Hours]

Unit3: Drives for Robot

Electrical drives, Stepper motor, Servo motors, DC motors, AC motors, hydraulic and pneumatic drives, hybrid drives, drive selection for robotic joints.

[07 Hours]

Unit4: Sensors and End Effectors in Robotics

Sensors:

Position sensor, velocity sensor, proximity sensors, touch sensors, force sensors, miscellaneous sensors etc. [07 Hours]

End Effectors:

Types of end effectors, Mechanical Grippers, Design of End Mechanical Grippers, and Other Principles of gripping, Tools and end effectors, Considerations in gripper selection and design.

Unit5: Robot Programming

[07 Hours]

Path planning, Lead through (manual and powered) programming, teach pendant mode, programming languages, Simple statements from AL, AML, RAIL, RPL, VAL Languages

Artificial Intelligence for Robots: Knowledge Representation, Problem representation and problem solving, search techniques in problem solving

Application of robot in: Material handling, assembly and inspection, process operations, etc. Economic Analysis for robotic implementation

Texts:

1. M. P. Grover, "Industrial Robotics: Technology, Programming and Applications", Tata Mc Graw Hill Publication.

References:

1. Saeed B. Niku, "Introduction to Robotics, Analysis, Systems, Applications", Pearson Education.

2. Richard D. Klafter, "Robotic Engineering : An Integrated Approach", Prentice Hall of India.

Computational Fluid Dynamics

BTAPE604B	Fundamentals of Computational Fluid Dynamics	PEC 4	3L-0T-0P	3 Credits
-----------	--	-------	----------	-----------

Teaching Scheme:	Examination Scheme:
T	Continuous Assessment: 20 Marks Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to

CO1	Identify applications of finite volume and finite element methods to solve Navier-Stoke equations.
CO2	Evaluate solution of aerodynamic flows. Appraise & compare current CFD software. Simplif flow problems and solve them exactly.
CO3	Design and setup flow problem properly within CFD context, performing solid modeling usin CAD package and producing grids via meshing tool
CO4	Interpret both flow physics and mathematical properties of governing Navier-Stokes equation and define proper boundary conditions for solution.
CO5	Use CFD software to model relevant engineering flow problems. Analyse the CFD results Compare with available data, and discuss the findings

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1		1				3	1		

CO2	2	3	2	1	2	1		3	2	
CO3	3	2	2	1	1			3	2	
CO4	3	3	2	1	2		1	3	2	
CO5	3	1	1		1		1	3	2	
CO6	1	1	1					3	2	

Course Contents:

Unit-I: Introduction to CFD

[07 Hours]

CFD – a research and design tool, CFD as third dimension of engineering supplementing theory and experiment, Steps in CFD solution procedure, strengths and weakness of CFD, Flow modeling using control volume - finite and infinitesimal control volumes, Concept of substantial derivative, divergence of velocity, Basic governing equations in integral and differential forms – conservation of mass, momentum and energy (No derivations), Physical interpretation of governing equations, Navier-Stoke's model and Euler's model of equations.

Unit- II: Basic Discretization Techniques

[07 Hours]

Introduction to grid generation (Types of grids such as structured, unstructured, hybrid, multiblock, Cartesian, body fitted and polyhedral etc.), Need to discretize the domain and governing equations, Finite difference approximation using Taylor series, for first order (Forward Difference Approximation, Backward Difference Approximation, Central difference Approximation) and second order (based on 3 node, 4 node and 5 node points), explicit and Implicit approaches applied to 1D transient conduction equation, Counter flow equation () using FTCS and Crank Nicholson's Method, Stability Criteria concept and physical interpretation, Thomas Tri-diagonal matrix solver.

Unit-III: Two Dimensional Steady and unsteady heat conduction

[07 Hours]

Solution of two dimensional steady and unsteady heat conduction equation with Dirichlet, Neumann, Robbins and mixed boundary condition – solution by Explicit and Alternating Direction Implicit method (ADI Method), Approach for irregular boundary for 2D heat conduction problems.

Unit-IV: Application of Numerical Methods to Convection – Diffusion system [07 Hours] Convection: first order wave equation solution with upwind, Lax—Wendroff, Mac Cormack scheme, Stability Criteria concept and physical interpretation Convection –Diffusion: 1D and 2D steady Convection Diffusion system – Central difference approach, Peclet Number, stability criteria, upwind difference approach, 1 D transient convection-diffusion system

Unit-V: Incompressible fluid flow

[07 Hours]

Solution of Navier-Stoke's equation for incompressible flow using SIMPLE algorithms and its variation (SIMPLER), Application to flow through pipe, Introduction to finite volume method.

CFD as Practical approach

Introduction to any CFD tool, steps in pre-processing, geometry creation, mesh generation, selection of physics and material properties, specifying boundary condition, Physical Boundary condition types such as no slip, free slip, rotating wall, symmetry and periodic, wall roughness, initializing and solution control for the solver, Residuals, analyzing the plots of various

parameters (Scalar and Vector contours such as streamlines, velocity vector plots and animation). Introduction to turbulence models. Reynolds Averaged Navier-Stokes equations (RANS), $k-\epsilon$, $k-\epsilon$. Simple problems like flow inside a 2-D square lid driven cavity flow through the nozzle

Texts/References:

- 1. "Computational Fluid Dynamics", John D Anderson: The Basics with Applications, McGraw-Hill
- 2. "Computational Fluid Dynamics", J. Tu, G.-H. Yeoh and C. Liu: A practical approach, Elsevier.
- 3. "Introduction to Computational Fluid Dynamics", A. W. Date: Cambridge University Press
- 4. "Computer Simulation of Fluid flow and heat transfer", P.S. Ghoshdastidar: Tata McGraw-Hill.
- 5. "Numerical Simulation of internal and external flows", Vol. 1, C. Hirsch, Wiley
- 6. Computational Fluid Mechanics and Heat transfer, Tannehill, Anderson, and Pletcher, CRC Press.

Open Elective-II

Quantitative Techniques in Project Management

BTMOE605A OE	Quantitative Techniques in Project Management	3-1-0	4Credits
--------------	---	-------	----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Engineering Mathematics-I/II/III

Course Outcomes: At the end of the course, students will be able to:

CO1	Define and formulate research models to solve real life problems for allocating limited
COI	resources by linear programming.
CO2	Apply transportation and assignment models to real life situations.
CO3	Apply queuing theory for performance evaluation of engineering and management
CO3	systems.
CO4	Apply the mathematical tool for decision making regarding replacement of items in real
CO4	life.
CO5	Determine the EOQ, ROP and safety stock for different inventory models.
CO6	Construct a project network and apply CPM and PERT method.

Course					I	Progran	n Outc	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	3	2				3	1	3	1
CO2	3	1	1	3	2				3	2	3	1
CO3	3	1	1	3	2				3	2	3	1
CO4	3	1	1	3	2	1			3	2	3	1
CO5	3	1	1	3	2	1			3	2	3	1
CO6	3	1	1	3	2	2			3	2	3	1

Course Contents:

Unit 1: Introduction

[07 Hours]

Introduction to Operations Research, Stages of Development of Operations Research, Applications of Operations Research, Limitations of Operations Research Linear programming problem, Formulation, graphical method, Simplex method, artificial variable techniques.

Unit 2: Assignment and Transportation Models

[07 Hours]

Transportation Problem, North west corner method, Least cost method, VAM, Optimality check methods, Stepping stone, MODI method, Assignment Problem, Unbalanced assignment problems, Travelling salesman problem.

Unit 3: Waiting Line Models and Replacement Analysis

[07 Hours]

Queuing Theory: Classification of queuing models, Model I (Birth and Death model) M/M/I (∞ , FCFS), Model II - M/M/I (N/FCFS).

Replacement Theory, Economic Life of an Asset, Replacement of item that deteriorate with time, Replacement of items that failed suddenly.

Unit 4: Inventory Models

[07 Hours]

Inventory Control, Introduction to Inventory Management, Basic Deterministic Models, Purchase Models and Manufacturing Models without Shortages and with Shortages, Reorder level and optimum buffer stock, EOQ problems with price breaks.

Unit 5: Project Management Techniques and Time and Cost Analysis [07 Hours]

Difference between project and other manufacturing systems. Defining scope of a project, Necessity of different planning techniques for project managements, Use of Networks for planning of a project, CPM and PERT.

Time and Cost Analysis

Time and Cost Estimates: Crashing the project duration and its relationship with cost of project, probabilistic treatment of project completion, Resource allocation and Resource leveling.

Texts:

- 1. P. K. Gupta, D. S. Hira, "Operations Research", S. Chand and Company Ltd., New Delhi, 1996
- 2. L. C. Jhamb, "Quantitative Techniques for managerial Decisions", Vol. I and II, Everest Publishing House, Pune, 1994.
- 3. N. D. Vohra, "Operations Research", Tata McGraw Hill Co., New Delhi.

References:

- 1. H. Taha, "Operations Research-An Introduction", Maxwell Macmillan, New York.
- 2. J. K. Sharma, "Operations Research-An Introduction", Maxwell Macmillan, New Delhi.
- 3. Harvey M. Wagner, "Principles of Operations Research with Applications to Managerial Decisions", Prentice Hall of India Pvt. Ltd., New Delhi, 2nd edition, 2005.
- 4. Rubin and Lewin, "Quantitative Techniques for Managers", Prentice Hall of India Pvt. Ltd., New Delhi.

Nanotechnology

	BTMOE605B	OEC2	Nanotechnology	3-1-0	4 Credits
--	-----------	------	----------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Demonstrate the understanding of length scales concepts, nanostructures and
COI	nanotechnology.
CO2	To impart basic knowledge on various synthesis and characterization techniques involved
CO2	in Nanotechnology
CO3	To educate students about the interactions at molecular scale
CO4	Evaluate and analyze the mechanical properties of bulk nanostructured metals and alloys,
CO4	Nano-composites and carbon nanotubes.
CO5	To make the students understand about the effects of using nanoparticles over
COS	conventional methods

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		3	3	2	1		3		1	3
CO2	3	2			3	3	2				1	3
CO3	1	1	1	3	2				2	1		1

CO4	1	1		3	3	2	1	3		1	3
CO5	1	1	1	3	2			2	1		1

Course Contents:

Unit 1: Scientific Revolutions

[07 Hours]

Types of Nanotechnology and Nano machines: the Hybrid nanomaterial. Multiscale hierarchical structures built out of Nano sized building blocks (nano to macro). Nanomaterial's in Nature: Nacre, Gecko, Teeth. Periodic table, Atomic Structure, Molecules and phases, Energy, Molecular and atomic size, Surfaces and dimensional space: top down and bottom up.

Unit 2: Forces between Atoms and Molecules

[07 Hours]

Particles and grain boundaries, strong Intermolecular forces, Electrostatic and Vander Waals forces between surfaces, similarities and differences between intermolecular and inter particle forces covalent and coulomb interactions, interaction polar molecules. Thermodynamics of self-assembly.

Unit 3: Opportunity at the Nano Scale

[07 **Hours**]

Length and time scale in structures, energy landscapes, Inter dynamic aspects of inter molecular forces, Evolution of band structure and Fermi surface.

Unit 4: Nano Shapes

[07 Hours]

Quantum dots, Nano wires, Nano tubes, 2D and 3D films, Nano and mesopores, micelles, bilayer, vesicles, bio nano machines, biological membranes.

Unit 5: Influence of Nano Structuring and Nano Behavior

[07 Hours]

Influence of Nano structuring on mechanical, optical, electronic, magnetic and chemical properties-gram size effects on strength of metals- optical properties of quantum dots.

Nano Behavior

Quantum wires, electronic transport in quantum wires and carbon nano-tubes, magnetic behavior of single domain particles and nanostructures, surface chemistry of Tailored monolayer, self-assembling.

Texts:

- 1. C. Koch, "Nanostructured materials: Processing, Properties and Potential Applications", Noyes Publications, 2002.
- 2. C. Koch, I. A. Ovidko, S. Seal and S. Veprek, "Structural Nano crystalline Materials: Fundamentals & Applications", Cambridge University Press, 2011.

References:

1. Bharat Bhushan, "Springer Handbook of Nanotechnology", Springer, 2nd edition, 2006.

2. Laurier L. Schramm, "Nano and Microtechnology from A-Z: From Nano-systems to Colloids and Interfaces", Wiley, 2014.

Energy Conservation and Management

BTMOE605C	OEC2	Energy Conservation and Management	3-1-0	4 Credits
-----------	------	------------------------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand energy problem and need of energy management
CO2	Carry out energy audit of simple units
CO3	Study various financial appraisal methods
CO4	Analyze cogeneration and waste heat recovery systems
CO5	Do simple calculations regarding thermal insulation and electrical energy conservation

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3		2	3			2	2		2
CO2	1	1	3	1	2	3			2	2		2
CO3	2	1	1							1		2
CO4	3	3			2	3						1

CO5		3		2			1

Course Contents:

Unit1: Introduction [07 Hours]

General energy problem, Energy use patterns and scope of conservation. Energy Management Principles: Need, Organizing, Initiating and managing an energy magnet program.

Unit2: Energy Auditing

[07 Hours]

Elements and concepts, Types of energy audits, Instruments uses in energy auditing . Economic Analysis: Cash flows, Time value of money, Formula are relating present and future cash flows-single amount, uniform series.

Unit3: Financial Appraisal Methods

[07 Hours]

Payback period, Net present value, Benefit-cost ratio, Internal—rate of return, Lifecyclecosts/benefits. Thermodynamicsofenergyconservation, Energyconservation in Boilers and furnaces, Energy conservation in Steam and condensate system.

Unit4: Cogeneration and Insulation and Heating

[07 Hours]

Concept, Types of cogeneration systems, performance evaluation of a cogeneration system. Waste Heat Recovery: Potential, benefits, waste heat recovery equipment's. Space Heating, Ventilation Air Conditioning (HVAC) and water heating of building, Transfer of heat, Space heating methods, Ventilation and air conditioning, Heat pumps, Insulation, Cooling load, Electric water heating systems, Electric energy conservation methods.

Insulation and Heating Industrial Insulation: Insulation materials, Insulation selection, Economical thickness of insulation.Industrial Heating: Heating by indirect resistance, direct resistance heating (salt bath furnace),andHeat treatment by induction heating in the electric arc furnace industry.

Unit5: Energy Conservation in Electric Utility and Industry

[07 Hours]

Energy costs and two part tariff, Energy conservation in utility by improving load factor, Load curve analysis, Energyefficient motors, Energy conservation in illumination systems, Importance of Rwefact orine energy conservation, Power factor improvement methods, Energyconservation in industries

Texts:

- 1. Callaghan, "Energy Conservation".
- 2. D.L. Reeg, "Industrial Energy Conservation", Pergamon Press.

References:

- 1. T.L. Boyen, "Thermal Energy Recovery", Wiley Eastern.
- 2. L.J. Nagrath, "System Modeling and Analysis", Tata Mc Graw Hill Publications.
- 3. S.P. Sukhatme, "Solar Energy", Tata Mc Graw Hill Publications.

Wind Energy

BIMOE605D OEC2 Wind Energy 3-1-0 4 Credits	BTMOE605D	OEC2	Willia Lileigy	3-1-0	4 Credits
--	-----------	------	----------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand historical applications of wind energy
CO2	Understand and explain wind measurements and wind data
CO3	Determine Wind Turbine Power, Energy and Torque
CO4	Understand and explain Wind Turbine Connected to the Electrical Network AC and DC
CO5	Understand economics of wind energy

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1							2	2	2	1		1

CO2		3	2	1	3	2	2	2	2		1
CO3	3	3	1	1	2	2	1				1
CO4	3	3		1							1
CO5	3	2	1								1

Course Contents:

Unit 1: Introduction and Wind Measurements

[07 Hours]

Historical uses of wind, History of wind electric generations

Wind Characteristics: Metrology of wind, World distribution of wind, Atmospheric stability, Wind speed variation with height, Wind speed statistics, Weibull statistics, Weibull parameters, Rayleigh and normal distribution

Wind Measurements

Biological indicators, Rotational anemometers, other anemometers, Wind direction

Unit 2: Wind Turbine Power, Energy and Torque

[07 Hours]

Power output from an ideal turbine, Aerodynamics, Power output from practical turbines, Transmission and generation efficiency, Energy production and capacity factor, Torque at constant speeds, Drive train oscillations, Turbine shaft power and torque at variable speeds.

Unit 3: Wind Turbine Connected to the Electrical Network

[07 Hours]

Methods of generating synchronous power, AC circuits, the synchronous generator, per unit calculations, the induction machine, motor starting, Capacity credit features of electrical network

Unit 4: Wind Turbines with Asynchronous Electric Generators

07 Hours]

Asynchronous systems, DC shunt generator with battery load, Per unit calculation, Self-excitation of the induction generators, Single phase operation the induction generator, Field modulated generators, Roesel generator.

Asynchronous Load: Piston water pumps, Centrifugal pumps, Paddle wheel heaters, Batteries, Hydrogen economy, and Electrolysis cells.

Unit 5: Economics of Wind Systems

[07 **Hours**]

Capital costs, Economic concepts, Revenues requirements, Value of wind generated electricity

Texts:

1. S. Ahmad, "Wind Energy: Theory and Practice", Prentice Hall of India Pvt. Ltd.

References:

- 1. Garg L. Johnson, "Wind Energy Systems" Prentice Hall Inc., New Jersey, 1985.
- 2. Desire Le Gouriers, "Wind Power Plants: Theory and Design" Pergamon Press, 1982.

Introduction to Probability Theory and Statistics

BTMOE605D	Introduction to Probability Theory and Statistics	OEC 2	3L-1T-0P	4 Credits
-----------	---	-------	----------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial:1 hrs/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Objective

The objective of this course is

- (i) To acquire the knowledge of mean, median, mode, dispersion, etc.
- (ii) To develop the basics of Probability theory
- (iii) To get the knowledge of random variables and their expectations
- (iv) To establish acquaintance with various probability distributions
- (v) To Acquire the knowledge of correlation and regression.

Course Outcome

At the end of the course, the student will be able to

- (i) Apply the concepts to find the measure of the central tendency, dispersion and moments forgrouped data
- (ii) Make use of the correlation, and regression analyses to find the correlation and regression Coefficients
- (iii) Observe and analyze the behavior of various discrete and continuous probabilityDistributions
- (iv)Investigate the properties such as mathematical expectation and variance of the random Variables.

Mapping of course outcomes with program outcomes

Cour	se		Program Outcomes										
Outco	mes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO	1	1	2	1	2	2	1			1	1		2
CO	2	1	1		2	1		1					2
CO	3	1	2		2	2	1				2		2
CO	4	1	1	1	3	3	1			1			2

Course Contents:

Unit I: Probability

[07 Hours]

Probability Theory: Definition of probability, Addition theorem of probability, Multiplication theorem of probability, Conditional probability, Bayes' theorem of inverse probability, Properties of probabilities with proofs.

Unit II: Theoretical Probability Distributions

[07 Hours]

Theoretical Probability Distributions: Binomial distribution, Poisson distribution, Normal

distribution, Fitting of binomial distributions, Properties of Binomial, Poisson and normal distributions, Relation between binomial and normal distributions, Relation between Poisson and normal distributions, Importance of normal distribution, Examples.

Unit III: Moments, Skewness and Kurtosis

[07 **Hours**]

Moments about mean and an arbitrary point; Skewness: positive skewness, negative skewness, symmetric frequency distribution, Bowley's coefficient of skewness, Karl Pearson's coefficient of skewness,

Measures of skewness based on moments (β_1 , γ_1); Concepts of kurtosis, leptokurtic, mesokurtic and platykurtic frequency distributions.

Unit IV: Correlation and Regression

[07 Hours]

Correlation: Types of correlation, Karl Pearson's correlation coefficient (Covariance Method), Spearman's rank correlation method, Regression: lines of regression, fitting of lines of regression by the least squares method, interpretation of slope and intercept, properties of regression coefficients.

Unit V: Sampling Theory and Testing of Hypothesis[07 Hours]

Introduction to sampling distributions, Population and sample, Null hypothesis and Alternative hypothesis, Single and two tailed test, Testing of hypothesis, Level of significance, Critical region, Procedure for testing of hypothesis.

Text Books:

- 1. Fundamentals of Statistics by S. C. Gupta, Himalaya Publishing House Pvt. Ltd., New Delhi.
- 2. Probability and Statistics by Dr. B. B. Singh, Synergy Knowledge ware, Mumbai.
- 3. Mathematical Statistics by P. Mukhopadhyay, New Central Book Agency, Kolkata.
- 4. Fundamentals of Mathematical Statistics by S. C. Gupta and V. K. Kapoor, S. Chand and Sons, New Delhi.
- 5. An Introduction to Probability and Statistics by V. K. Rohatgi and A. K. Md. Ehsanes Saleh, Wiley Intercedence Publication, New York.
- 6. Introduction to Probability and Statistical Applications by P. L. Meyer, Addison Wesley Publishing Co., Massachusetts.

Reference Books:

- a. Probability, Statistics with Reliability, Queuing and Computer Science Applications by KishorS. Trivedi, Wiley India Pvt. Ltd., Mumbai.
- b. Probability, Queuing Theory and Reliability Engineering by G. Hari baskaran,Laxmi

Publications, New Delhi.

c. Probability and Statistics by R. S. Murray, J. S. John, R. Alu Srinivasan and D. Goswami,

Schaum's Outlines series, McGraw Hill Publications, New Delhi.

d. Introduction to Theory of Statistics by A. M. Mood, F. A. Graybill and D. C. Boes, tata McGraw – Hill Publications, Pune.

Mechanical Engineering Lab – IV

BTMCL 606	PCC 18	Manufacturing Processes Lab - II+ +Machine Design Practice-II+ Applied	0-0-6	3 Credit
-----------	--------	---	-------	----------

Thermodynamics lab	

Practical Scheme:	Examination Scheme:
Practical: 6 hrs/batch	Continuous Assessment: 30 Marks
	End Semester Exam: 20 Marks

Group A (Manufacturing Processes Lab - II)

List of Practical's /Experiments/Assignments (Any Three from Group

A)

- 1. Study of types of chips
- 2. Study of the effect of process parameters on cutting ratio and shear angle in oblique turning process
- 3. Study of the effect of process parameters on the surface roughness during oblique turning process
- 4. Study of the effect of cutting fluid on surface roughness during oblique turning process
- 5. Study of the effect of process parameters on tool wear during oblique turning process
- 6. Study of the effect of process parameters on cutting forces in oblique turning process
- 7. Study of the effect of process parameters on cutting forces in end milling process
- 8. To develop a manual part program of a given component on CNC Lathe using G and M codes.
- 9. To develop a manual part program of a given component on CNC Lathe usingstock removal cycle.
- 10. To develop a manual part program of a given component on CNC Lathe using canned cycle.
- 11. To develop a manual part program of a given component on CNC Milling machine using G and M code.
- 12. To develop a manual part program of a given component on CNC Milling machine using pocket milling cycle.
- 13. To develop a manual part program of a given component on CNC Milling machine using scanned cycle.
- 14. To examine the effect of parameters on MRR and TWR in Electro Discharge Machining (EDM).
- 15. To evaluate machining accuracy in EDM.
- 16. Demonstration on Wire-EDM
- 17. Industrial visit to study manufacturing practices.

Group B (Machine Design Practice - II)

List of Practical's/Experiments/Assignments

- 1. The term work shall consist of 01 design projects based on syllabus of Machine Design-II. Design project shall consist of 2 full imperial size sheets-one involving assemblydrawings with apart list and Overall dimensions and other sheet involving drawing so find Individual Components. Manufacturing tolerances, surface finish symbols and geometric tolerances should be specified, where ever necessary, so as to make it a working drawing Make the Project full on Auto-cad or on any 3D Design software print the full sheet on A3 size paper.
- 2. A design report giving all necessary calculations for the design of components and assembly should be submitted in a separate file. Sheets for one of the projects will be drawn using AutoCAD and computer printout using plotter of the same will be attached along with the design report.
- 3. At least two assignments based on topics of syllabus of Machine Design-II.

Group C (Applied Thermodynamics Lab)

Perform any FIVE Practical's

- 1. Determination of calorific value by Bomb calorimeter
- 2. Measurement of dryness fraction of steam using separating & throttling calorimeter.
- 3. Trial on boiler
- 4. Trial on convergent/convergent-divergent type nozzle
- 5. Performance evaluation of steam turbine (Reaction / Impulse).
- 6. Performance evaluation of surface condenser.
- 7. Flue gas analysis using emission measuring instruments
- 8. Study & trial on single stage/two-stage reciprocating air compressor
- 9. Trial on centrifugal blower
- 10. Visit to appropriate industry to study and experience some of the above listed systems

B. Tech Seminar

BTMS607	Seminar II	PROJ-3	0L-0T-2P	1 Credits
---------	------------	--------	----------	-----------

Teaching Scheme:	Examination Scheme:
Practical: hrs/week	Continuous Assessment: 60 Marks
	Mid Semester Exam:
	End Semester Exam: 40 Marks

Objective:

- To expose and make students aware with latest research and research publications
- To understand the research and research publication, references, citation
- To enhance the presentation skill
- To enhance the report writing

To make the student aware about research publication sites
 Students are expected to prepare a seminar report on the chosen topic/area

selected with the discussion of chosen guide based on the available literature on the chosen topic.

Mini Project (TPCS)

BTAP608	Mini Project (TPCS)	PROJ-4	0L-0T-2P	1 Credits
---------	---------------------	--------	----------	-----------

Teaching Scheme:	Examination Scheme:
Practical: 2 hrs/week	Continuous Assessment: 60 Marks
	Mid Semester Exam:
	End Semester Exam: 40 Marks(Duration 03 hrs)

Students are expected to carry out a mini project under a project guide based on the chosen area. The project may be prototype/software based which may demonstrate Engineering application or community service. After completion the project work it is necessary that student should prepare a project report under the supervision of the assign guide and present before the committee.