Id	1
Question	In 8085 microprocessor system with memory mapped I/O, which of the following is true?
A	Devices have 8-bit address line
B	Devices are accessed using IN and OUT instructions
C	There can be maximum of 256 input devices and 256 output devices
D	Arithmetic and logic operations can be directly performed with the I/O data
Marks	2
Unit	1

Id	2
Question	In the I/O mode, the 8255 ports work as
A	reset pins
B	set pins
C	programmable I/O ports
D	only output ports
Marks	2
Unit	3

Id	3
Question	In BSR mode, only port C can be used to
A	set individual ports
B	reset individual ports
C	set and reset individual ports
D	programmable I/O ports
Marks	2
Unit	3

Id	4
Question	The feature of mode 0 is
A	any port can be used as input or output
B	output ports are latched
C	maximum of 4 ports are available
D	all of the mentioned
Marks	2
Unit	3

Id	4
Question	The strobed input/output mode is another name of
A	mode 0

B	mode 1
C	mode 2
D	none
Marks	2
Unit	3

Id	5
Question	If the value of the pin STB (Strobe Input) falls to low level, then

A	input port is loaded into input latches
B	input port is loaded into output latches
C	output port is loaded into input latches
D	output port is loaded into output latches
Marks	2
Unit	3

Id	6

Question The feature of mode 2 of 8255 is

A	single 8-bit port is available
B	both inputs and outputs are latched
C	port C is used for generating handshake signals
D	all of the mentioned
Marks	2
Unit	3

Id	7
Question	The number of hardware interrupts that the processor 8085 consists of is

A	1
B	3
C	5
D	7
Marks	2
Unit	3

Id	8
Question	The register that stores all the interrupt requests in it in order to serve them one by one on a priority basis is
A	Interrupt Request Register
B	In-Service Register
C	Priority resolver
D	Interrupt Mask Register
Marks	2
Unit	3

Id	9
Question	The register that stores the bits required to mask the interrupt inputs is
A	In-service register
B	Priority resolver
C	Interrupt Mask register
D	None
Marks	2
Unit	3

Id	10
Question	The interrupt control logic

A	manages interrupts
B	manages interrupt acknowledge signals
C	accepts interrupt acknowledge signal
D	all of the mentioned
Marks	2
Unit	3

Id	11
Question	In a cascaded mode, the number of vectored interrupts provided by 8259A is
A	4
B	8
C	16
D	64
Marks	2
Unit	3

Id	12
Question	. When the PS(active low)/EN(active low) pin of 8259A used in buffered mode, then it can be used as a
A	input to designate chip is master or slave
B	buffer enable
C	buffer disable
D	none
Marks	2
Unit	3

Id	13
Question	When non-specific EOI command is issued to 8259A it will automatically
A	set the ISR
B	reset the ISR
C	set the INTR
D	reset the INTR

Marks	2
Unit	3

Id	14
Question	In the application where all the interrupting devices are of equal priority, the mode used is
A	Automatic rotation
B	Automatic EOI mode
C	Specific rotation
D	EOI
Marks	2
Unit	3

Id	15
Question	The registers that store the keyboard and display modes and operations programmed by CPU are
A	I/O control and data buffers
B	Control and timing registers
C	Return buffers
D	Display address registers
Marks	2
Unit	3

Id	16
Question	The sensor RAM acts as 8-byte first-in-first-out RAM in
A	keyboard mode
B	strobed input mode
C	keyboard and strobed input mode
D	scanned sensor matrix mode
Marks	2
Unit	3

Id	17
Question	When a key is pressed, the debounce circuit waits for 2 keyboard scans and then checks whether the key is still depressed in
A	scanned keyboard special error mode
B	scanned keyboard with N-key rollover
C	scanned keyboard mode with 2 key lockout
D	sensor matrix mode
Marks	2
Unit	3

Id	18
Question	Port C of 8255 can function independently as
A	input port
B	output port
C	either input or output ports
D	both input and output ports
Marks	2
Unit	3

Id	19
Question	All the functions of the ports of 8255 are achieved by programming the bits of an internal register called
A	data bus control
B	read logic control
C	control word register
D	none of the mentioned
Marks	2
Unit	3

Id	20
Question	The time taken by the ADC from the active edge of SOC(start of conversion) pulse till the active edge of EOC(end of conversion) signal is called
A	edge time
B	conversion time
C	conversion delay
D	time delay
Marks	2
Unit	4

Id	21
Question	The procedure of algorithm for interfacing ADC contain
A	ensuring stability of analog input
B	issuing start of conversion pulse to ADC
C	reading digital data output of ADC as equivalent digital output
D	all of the mentioned
Marks	2
Unit	4

Id	22
Question	When a key is pressed, the debounce circuit waits for 2 keyboard scans and then checks whether the key is still depressed in
A	scanned keyboard special error mode
B	scanned keyboard with N-key rollover
C	scanned keyboard mode with 2 key lockout
D	sensor matrix mode
Marks	2
Unit	3

Id	23
Question	The register that provides control and status information about serial port is
A	IP
B	IE
C	TSCON
D	PCON and SCON
Marks	2
Unit	3

Id	24
Question	A microcontroller at-least should consist of:
A	RAM, ROM, I/O devices, serial and parallel ports and timers
B	CPU, RAM, I/O devices, serial and parallel ports and timers
C	CPU, RAM, ROM, I/O devices, serial and parallel ports and timers
D	CPU, ROM, I/O devices and timers
Marks	2
Unit	5

Id	25
Question	Unlike microprocessors, microcontrollers make use of batteries because they have:
A	high power dissipation
B	low power consumption
C	low voltage consumption
D	low current consumption
Marks	2
Unit	5

Id	26
Question	How are microcontrollers classified on the basis of internal bus width?
A	$8,16,32,64$ bits
B	$4,8,16,32$ bits
C	8,16 bits
D	$4,16,32$ bits
Marks	2
Unit	5

Id	27
Questio n	What is the most appropriate criterion for choosing the right microcontroller of our choice?
A	speed
B	availability
C	ease with the product
D	all of the mentioned
Marks	2
Unit	5

Id	28
Question	When the microcontroller executes some arithmetic operations, then the flag bits of which register are affected?
A	PSW
B	SP
C	DPTR
D	PC
Marks	2
Unit	5

Id	29
Question	What is the file extension that is loaded in a microcontroller for executing any instruction?
A	. doc
B	.c
C	.txt
D	.hex
Marks	2
Unit	5

Id	30
Question	. Which architecture is followed by general purpose microprocessors?
A	Harvard architecture
B	Von Neumann architecture
C	None of the mentioned
D	All of the mentioned
Marks	2
Unit	5

Id	31
Question	Which architecture involves both the volatile and the non volatile memory?
A	Harvard architecture
B	Von Neumann architecture
C	None of the mentioned
D	All of the mentioned
Marks	2
Unit	5

Id	32
Question	Which architecture provides separate buses for program and data memory?
A	Harvard architecture
B	Von Neumann architecture
C	None of the mentioned
D	All of the mentioned
Marks	2
Unit	5

Id	33
Question	Which microcontroller doesn't match with its architecture below?
A	Microchip PIC- Harvard
B	MSP430- Harvard
C	ARM7- Von Neumann
D	ARM9- Harvard
Marks	2
Unit	5

Id	34
Question	Harvard architecture allows:
A	separate program and data memory
B	pipe-ling
C	complex architecture
D	all of the mentioned
Marks	2
Unit	5

Id	35
Question	Which out of the following supports Harvard architecture?
A	ARM7
B	Pentium
C	SHARC
D	All of the mentioned
Marks	2
Unit	5

Id	36
Question	Why most of the DSPs use Harvard architecture?
A	they provide greater bandwidth
B	they provide more predictable bandwidth
C	they provide greater bandwidth \& also more predictable bandwidth
D	none of the mentioned
Marks	2
Unit	5

Id	37

Question	Which of the following supports CISC as well as Harvard architecture?
A	ARM7
B	ARM9
C	SHARC
D	None of the mentioned
Marks	2
Unit	5

Id	38
Question	Which of the two architecture saves memory?
A	Harvard
B	Von Neumann
C	Harvard \& Von Neumann
D	None of the mentioned
Marks	2
Unit	5

Id	39
Question	.8051 series of microcontrollers are made by which of the following companies?

A	Atmel
B	Philips
C	Atmel \& Philips
D	None of the mentioned
Marks	2
Unit	5

Id	40
Question	8051 series has how many 16 bit registers?
A	2
B	3

C	1
D	0
Marks	2
Unit	5

Id	41
Question	. When 8051 wakes up then 0x00 is loaded to which register?

A	DPTR
B	SP
C	PC
D	PSW
Marks	2
Unit	5

Id	42
Question	How are the bits of the register PSW affected if we select Bank2 of $8051 ?$
A	PSW.5=0 and PSW.4=1
B	PSW.2 $=0$ and PSW.3 $=1$
C	PSW.3 $=1$ and PSW.4 $=1$
D	PSW.3 $=0$ and PSW.4 $=1$
Marks	2
Unit	5

Id	43
Question	. If we push data onto the stack then the stack pointer
A	increases with every push
B	decreases with every push
C	increases \& decreases with every push
D	none of the mentioned
Marks	2
Unit	5

Id	44
Question	On power up, the 8051 uses which RAM locations for register R0- R7
A	$00-2 \mathrm{~F}$
B	$00-07$
C	$00-7 \mathrm{~F}$
D	$00-0 \mathrm{~F}$
Marks	2
Unit	5

Id	45
Question	How many bytes of bit addressable memory is present in 8051 based microcontrollers?
A	8 bytes
B	32 bytes

C	16 bytes
D	128 bytes
Marks	C
Unit	5

Id	46
Question	. DJNZ R0, label is how many bit instructions?

A	2
B	3
C	1
D	Can't be determined
Marks	2
Unit	5

Id	47
Question	JZ, JNZ, DJNZ, JC, JNC instructions monitor the bits of which register?
A	DPTR
B	B
C	A

D	PSW
Marks	2
Unit	5

Id	48
Question	When the call instruction is executed the topmost element of stack comes out to be
A	the address where stack pointer starts
B	the address next to the call instruction
C	address of the call instruction
D	next address of the stack pointer
Marks	2
Unit	5

Id	49
Question	LCALL instruction takes
A	2 bytes
B	4 bytes
C	3 bytes
D	1 byte
Marks	2
Unit	5

Id	50
Question	Are PUSH and POP instructions are a type of CALL instructions?
A	yes
B	no
C	none of the mentioned
D	cant be determined
Marks	2
Unit	5

Id	51
Question	What is the time taken by one machine cycle if crystal frequency is 20MHz?
A	1.085 micro seconds
B	0.60 micro seconds
C	0.75 micro seconds
D	1 micro seconds
Marks	2
Unit	5

Id	52
Question	What is the meaning of the instruction MOV A,05H?
A	data 05H is stored in the accumulator
B	fifth bit of accumulator is set to one
C	address 05H is stored in the accumulator
D	none of the mentioned
Marks	2
Unit	5

Id	53
Question	To initialize any port as an output port what value is to be given to it?
A	$0 \times \mathrm{FF}$
B	$0 x 00$
C	0×01
D	A port is by default an output port
Marks	2
Unit	5

Id	54
Question	Which of the ports act as the 16 bit address lines for transferring data through it?
A	PORT 0 and PORT 1
B	PORT 1 and PORT 2
C	PORT 0 and PORT 2
D	PORT 1 and PORT 3
Marks	2
Unit	5

Id	55
Question	Which of the following registers are not bit addressable?
A	SCON
B	PCON
C	A
D	PSW
Marks	2
Unit	5

Id	56
Question	Which instruction is used to check the status of a single bit?
A	MOV A,P0
B	ADD A,\#05H
C	JNB PO.0, label
D	CLR P0.05H
Marks	2
Unit	5

Id	57
Question	Which addressing mode is used in pushing or popping any element on or from the stack?
A	immediate
B	direct
C	indirect
D	register
Marks	2
Unit	5

Id	58
Question	What is the advantage of register indirect addressing mode?
A	it makes use of registers R0 and R1
B	it uses the data dynamically
C	it makes use of operator @
D	it is easy
Marks	2
Unit	5

Id	59
Question	Which of the following comes under the indexed addressing mode?
A	MOVX A, @DPTR
B	MOVC @ A+DPTR,A
C	MOV A,R0
D	MOV @R0,A
Marks	2
Unit	5

Id	60
Question	Is this a valid statement? SETB A
A	yes
B	no
C	cant be determined
D	none of the mentioned
Marks	2
Unit	5

Id	61
Question	When we add two numbers the destination address must always be.
A	some immediate data
B	any register
C	accumulator
D	memory
Marks	2
Unit	5

Id	62
Question	DAA command adds 6 to the nibble if:
A	CY and AC are necessarily 1
B	either CY or AC is 1
C	no relation with CY or AC
D	CY is 1
Marks	2
Unit	5

Id	63
Question	If SUBB A,R4 is executed, then actually what operation is being applied?
A	R4+A
B	R4-A
C	A-R4
D	R4+A
Marks	2
Unit	5

Id	64
Question	A valid division instruction always makes:
A	$\mathrm{CY}=0, \mathrm{AC}=1$

B	$\mathrm{CY}=1, \mathrm{AC}=1$
C	$\mathrm{CY}=0, \mathrm{AC}=0$
D	no relation with AC and CY
Marks	2
Unit	5

Question	In 8 bit signed number operations, OV flag is set to 1 if:
A	a carry is generated from D7 bit
B	a carry is generated from D3 bit
C	a carry is generated from D7 or D3 bit
D	a carry is generated from D7 or D6 bit
Marks	2
Unit	5

Id	66
Question	In unsigned number addition, the status of which bit is important?
A	OV
B	CY

C	AC
D	PSW
Answer	B
Marks	2
Unit	5

Question	Which instructions have no effect on the flags of PSW?
A	ANL
B	ORL
C	XRL
D	All of the mentioned
Marks	2
Unit	5

Id	68
Question	ANL instruction is used ___
A	to AND the contents of the two registers
B	to mask the status of the bits
C	all of the mentioned
D	none of the mentioned
Marks	2
Unit	5

Id	69
Question	CJNE instruction makes
A	the pointer to jump if the values of the destination and the source address are equal
B	sets CY=1, if the contents of the destination register are greater then that of the source register
C	sets CY=0, if the contents of the destination register are smaller then that of the source register
D	none of the mentioned
Marks	2
Unit	5

Id	70
Question	XRL, ORL, ANL commands have

A	accumulator as the destination address and any register, memory or any immediate data as the source address
B	accumulator as the destination address and any immediate data as the source address
C	any register as the destination address and accumulator, memory or any immediate data as the source address
D	any register as the destination address and any immediate data as the source address
Marks	2
Unit	5

Id	71
Question	What is the clock source for the timers?
A	some external crystal applied to the micro-controller for executing the timer

B	from the crystal applied to the micro-controller
C	through the software
D	through programming
Marks	2
Unit	5

Id	72
Question	What is the frequency of the clock that is being used as the clock source for the timer?
A	some externally applied frequency f '
B	controller's crystal frequency f
C	controller's crystal frequency $/ 12$
D	externally applied frequency/12
Marks	2
Unit	5

Id	73
Question	What is the function of the TMOD register?
A	TMOD register is used to set different timer's or counter's to their appropriate modes
B	TMOD register is used to load the count of the timer
C	Is used to interrupt the timer of the timer
D	2
Marks	5
Unit	5

Id	74
Question	What is the maximum delay that can be generated with the crystal frequency of $22 \mathrm{MHz} ?$
A	2978.9 sec
B	0.011 msec
C	11.63 sec
D	2.97 msec
Marks	2
Unit	5

Id	75
Question	Auto reload mode is allowed in which mode of the timer?
A	Mode 0
B	Mode 1
C	Mode 2
D	Mode 3
Marks	2
Unit	5

Id	76
Question	Find out the roll over value for the timer in Mode 0, Mode 1 and Mode 2?
A	$00 \mathrm{FFH}, 0 \mathrm{FFFH}, \mathrm{FFFFH}$
B	$1 \mathrm{FFFH}, 0 \mathrm{FFFH}, \mathrm{FFFFH}$
C	$1 \mathrm{FFFH}, \mathrm{FFFFH}, 00 \mathrm{FFH}$
D	$1 \mathrm{FFFH}, 00 \mathrm{FFH}, \mathrm{FFFFH}$

Marks	2
Unit	5

Id	77
Question	What steps are followed when we need to turn on any timer?
A	load the count, start the timer, keep monitoring it, stop the timer
B	load the TMOD register, load the count, start the timer, keep monitoring it, stop the

	timer
C	load the TMOD register, start the timer, load the count, keep monitoring it, stop the timer
D	none of the mentioned
Marks	2
Unit	5

Id	78
Question	If Timer 0 is to be used as a counter, then at what particular pin clock pulse need to be applied?
A	P3.3
B	P3.4
C	P3.5
D	P3.6
Marks	2
Unit	5

Id	79
Question	In the instruction "MOV TH1,\#-3", what is the value that is being loaded in the TH1 register?
A	0 xFCH
B	$0 \times \mathrm{xFBH}$
C	0 xFDH
D	0 xFEH
Marks	2
Unit	5

Id	80
Question	TF1, TR1, TF0, TR0 bits are of which register?
A	TMOD
B	SCON
C	TCON
D	SMOD

Marks	2
Unit	5

Id	81
Question	Which devices are specifically being used for converting serial to parallel and from parallel to serial respectively?
A	timers
B	counters
C	registers
D	serial communication
Marks	2
Unit	5

Id	82
Question	What is the difference between UART and USART communication?
A	they are the names of the same particular thing, just the difference of A and S is there in it
B	one uses asynchronous means of communication and the other uses synchronous means of communication
C	one uses asynchronous means of communication and the other uses asynchronous and synchronous means of communication
D	one uses angular means of the communication and the other uses linear means of communication
Marks	2
Unit	5

Id	83
Question	Which of the following best describes the use of framing in asynchronous means of communication?
A	it binds the data properly
B	it tells us about the start and stops of the data to be transmitted or received
C	it is used for error checking
D	it is used for flow control
Marks	2
Unit	5

Id	84
Question	Which of the following signal control the flow of data?
A	RTS
B	DTR
C	RTS \& DTR
D	None of the mentioned

Marks	2
Unit	5

Id	85
Question	Which of the following is the logic level understood by the micro-controller/micro- processor?
A	TTL logic level
B	RS232 logic level

C	None of the mentioned
D	TTL \& RS232 logic level
Marks	2
Unit	5

Id	86
Question	What is a null modem connection?
A	no data transmission
B	no MAX232
C	the RxD of one is the TxD for the other
D	no serial communication
Marks	2
Unit	5

Id	87
Questio n	Which of the following best states the reason that why baud rate is mentioned in serial communication?
A	to know about the no of bits being transmitted per second
B	to make the two devices compatible with each other, so that the transmission becomes easy and error free
C	to use Timer 1
D	for wasting memory
Marks	2
Unit	5

Id	88
Question	With what frequency UART operates(where f denoted the crystal frequency)?
A	$\mathrm{f} / 12$
B	$\mathrm{f} / 32$
C	$\mathrm{f} / 144$
D	$\mathrm{f} / 384$
Marks	2
Unit	5

Id	89
Question	What is the function of the SCON register?
A	to control SBUF and SMOD registers
B	to program the start bit, stop bit, and data bits of framing
C	to control SMOD registers
D	none of the mentioned
Marks	2
Unit	5

Id	90
Question	What should be done if we want to double the baud rate?
A	change a bit of the TMOD register
B	change a bit of the PCON register
C	change a bit of the SCON register
D	change a bit of the SBUF register
Marks	2
Unit	5

Id	91
Question	When an interrupt is enabled, then where does the pointer moves immediately after this interrupt has occurred?
A	to the next instruction which is to be executed
B	to the first instruction of ISR
C	to the first location of the memory called the interrupt vector table
D	to the end of the program
Marks	2
Unit	5

Id	92
Question	What are the contents of the IE register, when the interrupt of the memory location 0×00 is caused?
A	$0 \times \mathrm{xFH}$
B	0 x 00 H
C	$0 \times 10 \mathrm{H}$
D	$0 \times \mathrm{FOH}$
Marks	2
Unit	5

Id	93
Question	After RETI instruction is executed then the pointer will move to which location in the program?
A	next interrupt of the interrupt vector table
B	next instruction of the program after the IE instruction
C	next instruction after the RETI in the memory
D	none of the mentioned
Marks	2
Unit	5

Id	94
Question	Which pin of the external hardware is said to exhibit INT0 interrupt?
A	pin no 10
B	pin no 11
C	pin no 12
D	pin no 13
Marks	2
Unit	5

Id	95
Question	Which bit of the IE register is used to enable TxD/RxD interrupt?
A	IE.D5
B	IE.D2
C	IE.D3
D	IE.D4
Marks	2
Unit	5

Id	96
Question	Which of the following combination is the best to enable the external hardware interrupt 0 of the IE register (assuming initially all bits of the IE register are zero)?
A	EX0 $=1$
B	EA $=1$
C	any of the mentioned
D	EX0 $=1 \& E A=1$
Marks	2
Unit	5

Id	97
Question	Why normally LJMP instructions are the topmost lines of the ISR?

A	so as to jump to some other location where there is a wider space of memory available to write the codes
B	so as to avoid overwriting of other interrupt instructions
C	all of the mentioned
D	none of the mentioned
Marks	2
Unit	5

Id	98
Question	Which register is used to make the pulse a level or an edge triggered pulse?
A	TCON
B	IE

C	IPR
D	SCON
Marks	2
Unit	5

Question	What is the disadvantage of a level triggered pulse?
A	a constant pulse is to be maintained for a greater span of time
B	difficult to analyze its effects
C	it is difficult to produce
D	another interrupt may be caused if the signal is still low before the completion of the last instruction
Marks	2
Unit	5

Id	100
Question	What is the correct order of priority that is set after a controller gets reset?
A	TxD/RxD > T1 > T0 >EX1 > EX0
B	TxD/RxD < T1 < T0<EX1 < EX0
C	EX0 > T0 > EX1 >T1> TxD/RxD
D	EX0 < T0 < EX1 < T1 < TxD/RxD
Marks	2
Unit	5

Id	101
Question	Which operator is the most important while assigning any instruction as register indirect instruction?
A	$\$$
B	$\#$
C	@
D	$\&$
Marks	2
Unit	6

Id	102
Question	Find the number of times the following loop will be executed MOV R6,\#200 BACK:MOV R5,\#100 HERE:DJNZ R5, HERE DJNZ R6,BACK END
A	100
B	200
C	20000
D	2000
Marks	2
Unit	6

Id	103
Question	Calculate the jump code for again and here if code starts at 0000H
	MOV R1,\#0
	MOV A,\#0
	MOV R0,\#25H
	AGAIN:ADD
	A,\#OECH
	JNC HERE
	HERE: INC R1
	DJNZ R0,AGAIN

	MOV R0,A END
A	$\mathrm{F} 3,02$
B	$\mathrm{F} 9,01$
C	$\mathrm{E} 9,01$
D	$\mathrm{E} 3,02$
Marks	2
Unit	6

Id	104
Question	How are the status of the carry, auxiliary carry and parity flag affected if the write

	instruction MOV A, \#9C ADD A, $\# 64 \mathrm{H}$
A	$\mathrm{CY}=0, \mathrm{AC}=0, \mathrm{P}=0$
B	$\mathrm{CY}=1, \mathrm{AC}=1, \mathrm{P}=0$
C	$\mathrm{CY}=1, \mathrm{AC}=1, \mathrm{P}=1$
D	$\mathrm{CY}=0, \mathrm{AC}=1, \mathrm{P}=0$
Marks	2
Unit	6

Id	105
Questio n	How are the performance and the computer capability affected by increasing its internal bus width?
A	it increases and turns better
B	it decreases

C	remains the same
D	internal bus width doesn't affect the performance in any way
Marks	2
Unit	5

Id	106
Questio n	3. What is the order decided by a processor or the CPU of a controller to execute an instruction?
A	decode,fetch,execute
B	execute,fetch,decode
C	fetch,execute,decode

D	fetch,decode,execute
Marks	2
Unit	6

Id	107
Question	Mov 09H,\#05H;
	Mov A,\# 11H;
	Mov R1, \# 09H;
	ADD A, 09H;
	XCHD A , @ R1;

	DEC A after execution this instructions what will the contents of accumulator and @R1
A	$14 \mathrm{H}, 05 \mathrm{H}$
B	$0 \mathrm{EH}, 06 \mathrm{H}$
C	$0 \mathrm{FH}, 05 \mathrm{H}$
D	$14 \mathrm{H}, 06 \mathrm{H}$
Marks	2
Unit	6

Id	108
Question	MOV 20H, \#20H;
	MOV A,\#45H;
	MOV 21, \#44H;

	MOV R0, \#20H; XCHD A @R0 After execution of above program the content of accumulator, SP register and memory location 20H and 21H becomes
A	$\mathrm{A}=25 \mathrm{H}, \mathrm{SP}=07 \mathrm{H}$, memory location $20 \mathrm{H}=40 \mathrm{H}$, memory location $21 \mathrm{H}=43 \mathrm{H}$
B	$\mathrm{A}=25 \mathrm{H}, \mathrm{SP}=07 \mathrm{H}$, memory location $20 \mathrm{H}=40 \mathrm{H}$, memory location $21 \mathrm{H}=44 \mathrm{H}$
C	$\mathrm{A}=40 \mathrm{H}, \mathrm{SP}=07 \mathrm{H}$, memory location $20 \mathrm{H}=25 \mathrm{H}$, memory location $21 \mathrm{H}=44 \mathrm{H}$
D	None of the mentioned
Marks	2
Unit	6

Id	109
Question	Which instruction is used to check the status of a single bit?
A	MOV A,P0
B	ADD A,\#05H
C	JNB PO.0, label
D	CLR P0.05H
Marks	2
Unit	6

Id	110
Question	MOV A, \#09H; MOV R3, \#09H; UP: RRA DJNZ R3 UP END After execution of the above program what will be the content of accumulator and how many times RRA instruction will be executed.
A	09 H
B	42 H
C	84 H
D	12 H
Marks	2

Id	111
Question	MOV A,\#03H MOV R1,\#06H MOV 06H,\#08H ADD A,@R1 ANL A,\#05H END What will be the content of accumulator after execution of this instructions??
A	0BH
B	01 H
C	None of the above
D	10H

Marks	2
Unit	6

Id	112
Question	MOV A,\#03H MOV R1,\#06H MOV R3,08H LOOP: INC A DJNZ R3 LOOP END What will be the content of accumulator after execution of this instructions??
A	11 H
B	0AH
C	0BH
D	0CH

Marks	2
Unit	6

$\left.\begin{array}{|l|l|}\hline \text { Id } & 113 \\ \hline \text { Question } & \begin{array}{l}\text { If following program is executed then,What will be the content of accumulator? } \\ \text { MOV A, \#08H } \\ \text { MOV R2, \#05H } \\ \text { ADD A, R2 } \\ \text { MOV DPTR, \#2010H } \\ \\ \end{array} \\ \hline \text { AOV @ DPTR,A }\end{array}\right\}$
\(\left.$$
\begin{array}{|l|l|}\hline \text { Id } & \begin{array}{l}114 \\
\text { Question } \\
\text { Mov A,\# 11H; } \\
\text { Mov R1, \# 09H; } \\
\text { ADD A, 09H; } \\
\text { XCHD A , @ R1; } \\
\text { DEC A }\end{array}
$$ \\

after execution this instructions what will the contents of accumulator and @R1\end{array}\right]\)| A | $14 \mathrm{H}, 05 \mathrm{H}$ |
| :--- | :--- |
| B | $0 \mathrm{EH}, 06 \mathrm{H}$ |
| C | $0 \mathrm{FH}, 05 \mathrm{H}$ |
| D | $14 \mathrm{H}, 06 \mathrm{H}$ |
| Marks | 2 |

Unit	6

Id	115
Question	MOV 20H, \#20H; MOV A,\#45H; MOV 21, \#44H; MOV R0, \#20H; XCHD A @R0 After execution of above program the content of accumulator, SP register and memory location 20 H and 21H becomes
A	A=25H, SP=07H, memory location $20 \mathrm{H}=40 \mathrm{H}$, memory location $21 \mathrm{H}=43 \mathrm{H}$
B	A=25H, SP=07H, memory location $20 \mathrm{H}=40 \mathrm{H}$, memory location $21 \mathrm{H}=44 \mathrm{H}$
C	$\mathrm{A}=40 \mathrm{H}, \mathrm{SP}=07 \mathrm{H}$, memory location $20 \mathrm{H}=25 \mathrm{H}$, memory location $21 \mathrm{H}=44 \mathrm{H}$
D	None of the mentioned
Marks	2

Id	116
Question	Which instruction is used to check the status of a single bit?
A	MOV A,P0
B	ADD A,\#05H
C	JNB PO.0, label
D	CLR P0.05H
Marks	2
Unit	6

Id	117
Question	MOV A, \#09H; UPV R3, RRA $\# 09 \mathrm{H} ;$ DJNZ R3 UP END After execution of the above program what will be the content of accumulator and how many times RRA instruction will be executed.
A	09 H
B	42 H
C	84 H
D	12 H
Marks	2
Unit	6

Id	118
Question	MOV A,\#03H
	MOV R1,\#06H
	MOV 06H,\#08H ADD A,@R1 ANL A,\#05H END
What will be the content of accumulator after execution of this instructions??	

Id	119
Question	MOV A,\#03H MOV R1,\#06H MOV R3,08H LOOP: INC A DJNZ R3 LOOP END What will be the content of accumulator after execution of this instructions??
A	11 H
B	0 AH
C	0 BH
D	0 CH
Marks	2
Unit	6

Id	120			
Question	If following program is executed then,What will be the content of accumulator? MOV A, \#08H MOV R2, \#05H ADD A, R2 MOV DPTR, \#2010H 			
AOV @ DPTR,A		\quad	B	$13 H$
:---	:---			
C	0 BH			
D	2010			
Marks	0 DH			
Unit	6			

Id	121
Question	Which of the following are correct
A	ARM, AVR, PIC and 8051 are families of Microcontroller
B	AVR Stands for Advanced Virtual RISC
C	Microcontrollers are either RISC or CISC kind of instruction architecture and ARM stands for Advanced RISC Machines
D	all of the above are correct
Marks	2
Unit	5

Id	122
Question	What will be content of A, after the following set of instructions are executed? MOV @R0, \#04H MOV A, \#11H XCHD A, @R0
A	40 H
B	14 H
C	41 H
D	01 H
Marks	2
Unit	6

Id	123
Question	Find the number of times the following loop will be executed MOV R6,\#200 BACK: MOV R5,\#100 HERE: DJNZ R5, HERE DJNZ R6, BACK END
A	infinite times the loop will executed.
B	2000 times the loop will executed.
C	20000 times the loop will executed.
D	all of the above are correct
Marks	2
Unit	6

Id	124			
Question	Mov 09H,\#05H; Mov A, \# 11H; Mov R1, \# 09H; ADD A, 09H; XCHD A , @ R1; DEC A			
after execution this instructions what will the contents of accumulator and @R1		,	A	$14 \mathrm{H}, 05 \mathrm{H}$
:---	:---			
B	$0 \mathrm{FH}, 05 \mathrm{H}, 06 \mathrm{H}$			
C	$14 \mathrm{H}, 06 \mathrm{H}$			
D	2			
Unit	6			

Id	125
Question	MOV 20H, \#20H; MOV A,\#45H; MOV R0, \#20H; \#44H; XCHD A @R0 After execution of above program the content of accumulator, SP register and memory location 20H and 21H becomes
A	A=25H, SP=07H, memory location $20 \mathrm{H}=40 \mathrm{H}$, memory location $21 \mathrm{H}=43 \mathrm{H}$
B	A=25H, SP=07H, memory location $20 \mathrm{H}=40 \mathrm{H}$, memory location $21 \mathrm{H}=44 \mathrm{H}$
C	A=40H, SP=07H, memory location $20 \mathrm{H}=25 \mathrm{H}$, memory location $21 \mathrm{H}=44 \mathrm{H}$
D	None of the mentioned
Marks	2
Unit	6

Id	126
Question	Which instruction is used to check the status of a single bit?
A	MOV A,P0
B	ADD A,\#05H
C	JNB PO.0, label
D	CLR P0.05H
Marks	2
Unit	6

Id	127
Question	MOV A, \#09H;
	MOV R3, \#09H;
	UP: RRA DJNZ R3 UP END After execution of the above program what will be the content of accumulator and how many times RRA instruction will be executed.
A	09 H
B	42 H
C	84 H
D	12 H
Marks	2
Unit	6

Id	128
Question	MOV A,\#03H
	MOV R1,\#06H
	MOV 06H,\#08H
	ADD A,@R1 ANL A,\#05H END
What will be the content of accumulator after execution of this instructions??	
A	0 BH
B	01 H
D	None of the above
Marks	10 H
Unit	6

Id	129
Question	MOV A,\#03H MOV R1,\#06H MOV R3,08H LOOP: INC A DJNZ R3 LOOP END
What will be the content of accumulator after execution of this instructions??	

Id	130
Question	If following program is executed then,What will be the content of accumulator?
	MOV A, \#08H
	MOV R2, \#05H
	ADD A, R2
	MOV DPTR, \#2010H
	MOV @ DPTR,A
A	13H
B	0BH
C	2010

D	0DH
Marks	2
Unit	6

Id	131
Question	Which of the following are correct
A	ARM, AVR, PIC and 8051 are families of Microcontroller
B	AVR Stands for Advanced Virtual RISC
C	Microcontrollers are either RISC or CISC kind of instruction architecture and ARM stands for Advanced RISC Machines

D	all of the above are correct
Marks	2
Unit	5

Id	132
Question	What will be content of A, after the following set of instructions are executed? MOV @R0, \#04H MOV A, \#11H XCHD A, @R0
A	40 H
B	14 H
C	41 H
D	01 H
Marks	2
Unit	6

Id	133
Question	Find the number of times the following loop will be executed MOV R6,\#200 BACK: MOV R5,\#100 HERE: DJNZ R5, HERE DJNZ R6, BACK END
A	infinite times the loop will executed.
B	2000 times the loop will executed.
C	20000 times the loop will executed.
D	all of the above are correct

Marks	2
Unit	6

Id	134
Question	MOV A,\#03H MOV R1,\#06H MOV 06H,\#08H ADD A,@R1 ORL A,\#55H END What will be the content of accumulator after execution of this instructions??
A	0BH
B	20 H
C	01 h
D	none of the above
Marks	2

Id	135
Question	Mov 10H, \#10H;
	Mov A, \#25H;
	Mov 11,\#24H;
	Mov R0, \#10H;
	XRL A @R0
	ADD A, \#04H
	After execution of the this program, what will be the contents of accumulater?
A	35 H
B	39H
C	29H
D	None of the answer correct
Marks	2

Id	136
Question	MOV A, \#56H MOV R1, \#50H MOV 50H, \# 45H XCHD A, @R1 What is the result at A, R1?
A	$55 \mathrm{H}, 50 \mathrm{H}$
B	$55 \mathrm{H}, 46 \mathrm{H}$
C	$46 \mathrm{H}, 50 \mathrm{H}$
D	$46 \mathrm{H}, 55 \mathrm{H}$
Marks	2
Unit	6

Id	137
Question	Mov 10H, \#15H;
	Mov A, \#25H;
	Mov 11,\#24H;
	Mov R0,\#10H;
	XRL A @R0
	ADD A, \#04H
	After execution of the this program, what will be the contents of accumulater?
A	CFH
B	34H
C	D3H
D	some instructions are wrong content of A will be 00h
Marks	2
Unit	6

Id	138 Question Mov R3, \#10 Mov A, \#55H Mov R2, \#70 CPL, A RR A
	ADD A R2 END
A	55 H
B	00 H
C	C5H
D	AAH
Marks	2
Unit	6

\(\left.$$
\begin{array}{|l|l|}\hline \text { Id } & 139 \\
\hline \text { Question } & \begin{array}{l}\text { Mov 09H,\#05H; } \\
\text { Mov A, \# 11H; } \\
\text { Mov R1, \# 09H; } \\
\text { ADD A, 09H; } \\
\text { XCHD A , @ R1; } \\
\text { DEC A }\end{array}
$$ \\

after execution this instructions what will the contents of accumulator and @R1\end{array}\right]\)| A | $14 \mathrm{H}, 05 \mathrm{H}$ |
| :--- | :--- |
| B | $0 \mathrm{EH}, 06 \mathrm{H}$ |
| C | $0 \mathrm{FH}, 05 \mathrm{H}$ |
| D | $14 \mathrm{H}, 06 \mathrm{H}$ |
| Marks | 2 |
| Unit | 6 |

Id	140
Question	MOV 20H, \#20H;
	MOV A,\#45H;
	MOV 21, \#44H;
	MOV R0, \#20H;
	XCHD A @R0
	After execution of above program the content of accumulator, SP register and memory location 20 H and 21 H becomes
A	$\mathrm{A}=25 \mathrm{H}, \mathrm{SP}=07 \mathrm{H}$, memory location $20 \mathrm{H}=40 \mathrm{H}$, memory location $21 \mathrm{H}=43 \mathrm{H}$
B	$\mathrm{A}=25 \mathrm{H}, \mathrm{SP}=07 \mathrm{H}$, memory location $20 \mathrm{H}=40 \mathrm{H}$, memory location $21 \mathrm{H}=44 \mathrm{H}$
C	$\mathrm{A}=40 \mathrm{H}, \mathrm{SP}=07 \mathrm{H}$, memory location $20 \mathrm{H}=25 \mathrm{H}$, memory location $21 \mathrm{H}=44 \mathrm{H}$
D	None of the mentioned
Marks	2
Unit	6

Id	141
Question	Which instruction is used to check the status of a single bit?
A	MOV A,P0
B	ADD A,\#05H
C	JNB PO.0, label
D	CLR P0.05H
Marks	2
Unit	6

Id	142
Question	MOV A, \#09H; MOV R3, \#09H; UP: RRA DJNZ R3 UP END After execution of the above program what will be the content of accumulator and how many times RRA instruction will be executed.
A	09 H
B	42 H
C	84 H
D	12 H
Marks	2
Unit	6

Id	143
Question	MOV A,\#03H
	MOV R1,\#06H
	MOV 06H,\#08H
	ADD A,@R1
	END A,\#05H What will be the content of accumulator after execution of this instructions??
A	$0 B H$
B	01 H
C	None of the above
D	10 H
Marks	2
Unit	6

Id	144
Question	MOV A,\#03H MOV R1,\#06H MOV R3,08H LOOP: INC A DJNZ R3 LOOP END What will be the content of accumulator after execution of this instructions??
A	11 H
B	0AH
C	0BH
D	0 CH
Marks	2
Unit	6

Id	145 Question If following program is executed then, What will be the content of accumulator? MOV A, \#08H MOV R2, \#05H ADD A, R2 MOV DPTR, \#2010H MOV @ DPTR,A
A	13 H
B	0 BH
C	2010
D	0 DH
Marks	2
Unit	6

Id	146
Question	Which of the following are correct
A	ARM, AVR, PIC and 8051 are families of Microcontroller
B	AVR Stands for Advanced Virtual RISC
C	Microcontrollers are either RISC or CISC kind of instruction architecture and ARM stands for Advanced RISC Machines
D	all of the above are correct
Marks	2
Unit	5

Id	147
Question	What will be content of A, after the following set of instructions are executed? MOV @R0, \#04H MOV A, \#11H XCHD A, @R0
A	40 H
B	14 H
C	41 H
D	01 H
Marks	2
Unit	6

Id	148
Question	Find the number of times the following loop will be executed MOV R6,\#200 BACK: MOV R5,\#100 HERE: DJNZ R5, HERE DJNZ R6, BACK END
A	infinite times the loop will executed.
B	2000 times the loop will executed.
C	20000 times the loop will executed.
D	all of the above are correct
Marks	2
Unit	6

Id	149
Question	MOV A,\#03H MOV R1,\#06H MOV 06H,\#08H ADD A,@R1 ORL A,\#55H END What will be the content of accumulator after execution of this instructions??
A	0BH
B	20 H
C	01 h
D	none of the above
Marks	2
Unit	6

Id	150
Question	Mov 10H, \#10H;
	Mov A, \#25H;
	Mov 11,\#24H;
	Mov R0,\#10H;
	XRL A @R0
	ADD A, \#04H
	After execution of the this program, what will be the contents of accumulater?
A	35H
B	39H
C	29H
D	None of the answer correct
Marks	2
Unit	6

Id	151
Question	MOV A, \#56H MOV R1, \#50H MOV 50H, \# 45H XCHD A, @R1 What is the result at A, R1?
A	$55 \mathrm{H}, 50 \mathrm{H}$
B	$55 \mathrm{H}, 46 \mathrm{H}$
C	$46 \mathrm{H}, 50 \mathrm{H}$
D	$46 \mathrm{H}, 55 \mathrm{H}$
Marks	2
Unit	6

Id	152			
Question	Mov $10 \mathrm{H}, \# 15 \mathrm{H} ;$ Mov A, \#25H; Mov $11, \# 24 \mathrm{H} ;$ Mov R0,\#10H; XRL A @R0 ADD A, \#04H			
A	CFH execution of the this program, what will be the contents of accumulater?	,	B	34 H
:---	:---			
C	D3H			
D	some instructions are wrong content of A will be 00 h			
Marks	2			
Unit	6			

Id	153
Question	What will be the content of A after execution of the following program? Mov A, \#55H

	Mov R3, \#10
	Mov R2, \#70
	CPL, A
	RR A
	ADD A R2
	END
A	$55 H$
B	00 H
C	C5H
D	AAH
Marks	2
Unit	6

