Branch:M.TechVLSI

Sem.:- I
Subject with Subject Code:-Graph Theory and Discrete Optimization (MTVLC101)
Marks: 20
Date:-09-10-2017 Time:- 1 Hr.

MODEL ANSWER SOLUTION

Instructions:-Assume necessary data wherever required.
(Marks)
Q.No. $1 \quad$ Attempt any one of the following
a.) What are Hamiltonian circuit, Hamiltonian trail and Hamiltonian graph? Prove that if G fails Chavatal's condition, then G has at least $(n-2)$ edges. Conclude from this that the maximum number of edges in a simple non-Hamiltoniann-vertex graph is $\binom{n-1}{2}+1$.

Ans: Hamiltonian trail of a graph is a one which visits every vertex only once and it can start from any vertex and end to any vertex.
Hamiltonian circuit is a closed path that visits every vertex only once, start and end vertex is same.
A connected graph G is said to be a Hamiltonian graph, if there exists a cycle which contains all the vertices of G .

Example:

For the above graph the Hamiltonian trail is $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{A}$.
As the trail contains all the vertices it is Hamiltonian graph. The graph start and end on the same vertex so it is Hamiltonian circuit.

Suppose G fails Chavatal's condition. Then there exists some $\mathrm{i}<\mathrm{n} / 2$ such that $d i \geq i \operatorname{and} d n-i<n-i$. Let u be a vertex with degree di, and let v be a vertex with degree dn-i. Thus, in G, we have

$$
d_{\bar{G}}(u)+d_{\bar{G}}(v)=(n-1)-\mathrm{dG}(\mathrm{u})+(n-1)+\mathrm{dG}(\mathrm{v})
$$

$$
\begin{gathered}
=2 n-2-d_{i}-d_{n-i} \\
>2 n-2-i-(n-i)=n-2
\end{gathered}
$$

So

$$
d_{\bar{G}}(u)+d_{\bar{G}}(v) \geq n-1
$$

Since u and v have degree sum at least $n-1$ in \bar{G}, and since a simple graph has at most one edge joining them (counted twice in the degree sum), there must be at least $\mathrm{n}-2$ distinct edges in G incident to $\{\mathrm{u}, \mathrm{v}\}$. So $|E(\bar{G})| \geq n-2$.
Therefore, the number of edges in a simple non-Hamiltonian graph G on n vertices is

$$
\begin{aligned}
&|E(G)|=\binom{n}{2}-|E(\bar{G})| \leq \frac{n(n-1)}{2}-(n-2) \\
&=\frac{n^{2}-3 n+4}{2}=\frac{(n-1)(n-2)}{2}+1=\binom{n-1}{2}+1
\end{aligned}
$$

So the maximum number of edges is $\binom{n-1}{2}+1$.
b.) What is a spanning tree give example? Find the number of spanning trees for the below incomplete graph G.

G
Ans:
A spanning tree of an undirected graph is the sub-graph that includes all the vertices of G.
Example: In the below example, G is the connected graph and H is the sub-graph of G.
The graph H is a tree as it has no cycles. Hence it is a spanning tree.

G
H

V1

Here to find the spanning tree.

1. Construct the adjacency matrix.

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

2. Diagonal 0's should be replaced with degree of node.

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

3. Non-diagonal 1's should be replaced with "-1".
4. Non-diagonal 0's will remain 0 's.

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
-1 & -1 & 2
\end{array}\right]
$$

5. No of spanning trees= co-factor of any element.

$$
a_{11}=(-1)^{1+1}\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right]
$$

Therefore, No of spanning tree $=1$

Q.No. 2 Attempt any three of the following:

a.)Define.(Give an example)

1.Graph

Ans: A graph is a pair of sets (V, E), where V is the set of vertices and E is the set of edges, connecting the pair of vertices. In the following graph $\mathrm{V}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$
$\mathrm{E}=\{\mathrm{ab}, \mathrm{ac}, \mathrm{bd}, \mathrm{bc}, \mathrm{de}\}$

2.Tree

Ans: A connected acyclic graph is called a tree. In other words, a connected graph with no cycles is called a tree.
The edges of a tree are known as branches. Elements of trees are called their nodes. The nodes without child nodes are called leaf nodes.

Example: The graph shown here is a tree because it has no cycles and it is connected. It has four vertices and three edges, i.e., for ' n ' vertices ' $n-1$ ' edges.

b.) What is an Adjacency matrix and Incidence matrix of graph? Find the adjacency matrix of G shown in figure below

G

Ans:

An adjacency matrix is a way to represent a finite graph G on n vertices by an $n x n$ matrix a, whose entries are either 0 or 1 .
Consider a graph G having vertex set $V(G)=\{V 1, V 2 \ldots . . \mathrm{Vn}\}$. Then the adjacency matrix $\mathrm{A}(\mathrm{G})=\left[a_{i j}\right]$ of G is a n x n matrix defined as

$$
a_{i j=\left\{\begin{array}{l}
1 \text { ifviisadjacenttov } j \\
0 \quad \text { otherwise }
\end{array}\right.}^{\text {in }}
$$

The incidence matrix of a graph is a matrix representation of the graph, in which each row and each column represents an edge and a vertex, respectively.
Consider a graph G having vertex set $V(G)=\{v 1, v 2 \ldots v n\}$ and $E(G)=$ $\{\mathrm{e} 1, \mathrm{e} 2 \ldots \ldots \mathrm{en}\}$. Then the incident matrix $\mathrm{B}=\left[b_{i j}\right]$ of G is a nx m matrix defined as

$$
b_{i j=\{ }^{1 \text { ifviandejareincident }} \begin{aligned}
& 0 \quad \text { otherwise }
\end{aligned}
$$

The adjacency matrix of G is

$$
A(G)=\begin{gathered}
\\
v_{1} \\
v_{2} \\
v_{3} \\
v_{A}
\end{gathered}\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

c.) What is an Isomorphic graph? Prove whether the graphs G1 and G2 are isomorphic or not?

G1
 G2

Ans:
Two graphs G1 and G2 are said to be isomorphic if:

1. Their numbers of components (vertices and edges) are same.
2. Their edge connectivity is retained.

If $\mathrm{G} 1 \equiv \mathrm{G} 2$ then:

1. $|\mathrm{V}(\mathrm{G} 1)|=|\mathrm{V}(\mathrm{G} 2)|$
2. $|\mathrm{E}(\mathrm{G} 1)|=|\mathrm{E}(\mathrm{G} 2)|$
3. Degree sequences of G1 and G2 are same.

For the above two graphs G1 and G2

1. Number of vertices are same i.e 6
2. Number of edges for G1 are 9 and for G 2 are 6 which are not same.

Therefore, graphs G1 and G2 are non-isomorphic graphs as all the condition for isomorphic graphs are not satisfied.
d.)Define Eccentricity, radius and diameter of graph. Prove that For any connected $\operatorname{graph} \mathrm{G}, \operatorname{rad}(\mathrm{G}) \leq \operatorname{diam}(\mathrm{G}) \leq 2 \operatorname{rad}(\mathrm{G})$.
Ans:
For a given vertex v of a connected graph, the eccentricity of v , denoted ecc(v), is defined to be the greatest distance from v to any other vertex. That is,
$\operatorname{ecc}(\mathrm{v})=\max \{d(u, v)\}$
$\mathrm{x} \square \mathrm{V}$ (G)
In Figure below, $\operatorname{ecc}(a)=5$ since the farthest vertices from a (namely k, m, n) are at a distance of 5 from a. Of the vertices in this graph, vertices c, k, mand n have the greatest eccentricity (6), and vertices e, f and g have the smallest eccentricity (3). These values and types of vertices are given special names.

In a connected graphG, the radius of G, denoted $\operatorname{rad}(\mathrm{G})$, is the value of the smallest eccentricity.
The diameter of G , denoted diam(G), is the value of the greatest eccentricity. In Figure below, the radius is 3, the diameter is 6 .

Proof:

By definition, $\operatorname{rad}(\mathrm{G}) \leq \operatorname{diam}(\mathrm{G})$, so we just need to prove the secondinequality. Let u and v be vertices in G such that $d(u, v)=\operatorname{diam}(G)$. Further, let c be a vertex in the center of G . Then,

$$
\operatorname{diam}(\mathrm{G})=\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq \mathrm{d}(\mathrm{u}, \mathrm{c})+\mathrm{d}(\mathrm{c}, \mathrm{v}) \leq 2 \operatorname{ecc}(\mathrm{c})=2 \operatorname{rad}(\mathrm{G})
$$

