Subject: Signal Theory Solution

Q.1A random variable	<i>X</i> has the following probability distribution	(08)
	\mathcal{O}	

X	-2	-1	0	1	2	3
P(x)	0.1	K	0.2	2K	0.3	3K

Find (i) the value of K (ii) Evaluate P(X < 2) and P(-2 < X < 2) (iii) find the cdf of X

Answer:

- (i) the value of K Since P(x) =1, 6K+0.6=1 K=1/15
- (ii) Evaluate P(X < 2) and P(-2 < X < 2)

X	-2	-1	0	1	2	3
P(x)	0.1	1/15	0.2	2/15	0.3	3/15

$$P(X < 2) = P(X = -2, -1, 0 \text{ or } 1)$$

= P(X = -2) +P(X = -1) +P(X = 0) +P(X = 1)
= 1/2
$$P(-2 < X < 2) = P(X = -1, 0 \text{ or } 1)$$

= P(X = -1) +P(X = 0) +P(X = 1)
= 2/5

(iii) find the cdf of X F(x)=0, when x< -2 =1/10, when -2 $\le x < -1$ =1/6, when -1 $\le x < 0$ =11/30, when $0 \le x < 1$ =1/2, when $1 \le x < 2$ =4/5, when $2 \le x < 3$ =1, when $3 \le x$ Q.1 For the bivariate probability distribution of (X,Y) given below, find $P(X \le 1)$, $P(Y \le 3)$, $P(X \le 1, Y \le 3)$, and $P(X \le 1/Y \le 3)$. (08)

Y	1	2	3	4	5	6
	0	0	1/32	2/32	2/32	3/32
1	1/16	1/16	1/8	1/8	1/8	1/8
2	1/32	1/32	1/64	1/64	0	2/64

Answer:

$$P(X \le 1) = P(X = 0) + P(X = 1)$$

= $\sum_{j=1}^{6} P(X = 0, Y = j) + \sum_{j=1}^{6} P(X = 1, Y = j)$
= $(0 + 0 + 1/32 + 2/32 + 2/32 + 3/32) + (1/16 + 1/16 + 1/8 + 1/8 + 1/8)$
= 7/8

$$P(Y \le 3) = P(Y=1) + P(Y=2) + P(Y=3)$$

= $\sum_{i=0}^{2} P(X = i, Y = 1) + \sum_{i=0}^{2} P(X = i, Y = 2) + \sum_{i=0}^{2} P(X = i, Y = 3)$
= 23/64

$$P(X \le 1, Y \le 3) = \sum_{j=1}^{3} P(X = 0, Y = j) + \sum_{j=1}^{3} P(X = 1, Y = j)$$

=9/32

$$P(X \le 1/Y \le 3) = \frac{P(X \le 1, Y \le 3)}{P(Y \le 3)} = \frac{9/32}{23/64}$$
$$= 18/23$$

Q.2 Attempt any three

a) Prove that, $E\{(X-a)^2\} = E\{(X-\mu)^2\} + (\mu-a)^2$

Answer:

Let us consider the LHS
$$E\{(X - \mu)^2\} + (\mu - a)^2$$

 $E\{X^2 - 2\mu X + \mu^2)\} + (\mu^2 + a^2 - 2a\mu)$
 $E\{X^2) - \mu^2 + \mu^2 + a^2 - 2a\mu$
 $E\{X^2) + a^2 - 2a\mu$

Which can be written as

 $E\{X^2 + a^2 - 2aX\}$ which is nothing but RHS.

$$E\{(X-a)^{2}\} = E\{(X-\mu)^{2}\} + (\mu-a)^{2}$$

b) State the axioms of probability. State and prove the theorem of total probability

Answer:

Axioms of probability

- (i) $0 \le P(A) \le 1$
- (ii) P(S) = 1
- (iii) $P(A \cup B) = P(A) + P(B)$
- (iv) If A_1, A_2, \dots, A_n are a set of mutually exclusive events then $P(A_1 \cup A_2, \dots, A_n) = P(A_1) + P(A_2) + \dots + P(A_n)$

Theorem of total probability

If B_1, B_2, \ldots, B_n be a set of exhaustive and mutually exclusive events then

$P(A) = \sum_{i=1}^{n} P(Bi)P(A/Bi)$

c) State the properties of Probability distribution and density function.

Answer:

Properties of probability distribution functions

- (i) $F_x(x)$ is non-decreasing function of x.
- (ii) $F_x(-\infty) = 0$ and $F_x(\infty) = 1$
- (iii) $\frac{d}{dx}F_X(x)=f_X(x)$ at all points, where $F_X(x)$ is differentiable.
- (iv) If X is discrete random variable taking values x_1, x_2, x_3, \dots Where $x_1 < x_2 < x_3 \dots x_{i-1} < x_i < \dots$ then $P(X=x_i)=F_X(x_i)-F_X(x_{i-1})$

Properties of probability density function

forcontinuous random variable

(i) $f(x) \ge 0$ for all $x \in R_x$

(ii)
$$\int_{\mathrm{Rx}} f(x) \, dx = 1$$

for discrete random variable

(i) $P_i \ge 0$ for all i (ii) $\sum_i P_i = 1$

d) Continuous random Variable has a $pdf(x) = 3x^2, 0 \le x \le 1$. Find a and b such that

(i) $P(X \le a) = P(X > a)$ and (ii) P(X > b) = 0.05

Answer:

(i)
$$P(X \le a) = P(X > a)$$

 $\int_{0}^{a} 3x^{2} dx = \int_{a}^{1} 3x^{2} dx$
 $a^{3} = 1 - a^{3}$
 $a^{3} = 1/2$
a=0.7937

(ii)
$$P(X > b) = 0.05$$

 $\int_{b}^{1} 3x^{2} dx = 0.05$
 $b = 0.9830$