Subject: Signal Theory Solution

Q.1A random variable X has the following probability distribution

x	-2	-1	0	1	2	3
$\mathrm{P}(\mathrm{x})$	0.1	K	0.2	2 K	0.3	3 K

Find (i) the value of K (ii) Evaluate $P(X<2)$ and $P(-2<X<2)$ (iii) find the cdf of X

Answer:

(i) the value of K

Since $P(x)=1,6 K+0.6=1$
$\mathrm{K}=1 / \mathbf{1 5}$
(ii) Evaluate $P(X<2)$ and $P(-2<X<2)$

x	-2	-1	0	1	2	3
$\mathrm{P}(\mathrm{x})$	0.1	$1 / 15$	0.2	$2 / 15$	0.3	$3 / 15$

$$
\begin{aligned}
& P(X<2)=\mathrm{P}(\mathrm{X}=-2,-1,0 \text { or } 1) \\
& =\mathrm{P}(\mathrm{X}=-2)+\mathrm{P}(\mathrm{X}=-1)+\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1) \\
& \begin{aligned}
&=\mathbf{1 / 2} \\
& P(-2<X<2)=\mathrm{P}(\mathrm{X}=-1,0 \text { or } 1) \\
&=\mathrm{P}(\mathrm{X}=-1)+\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1) \\
&=\mathbf{2} / \mathbf{5}
\end{aligned}
\end{aligned}
$$

(iii) find the cdf of x

$$
\begin{aligned}
\mathrm{F}(\mathrm{x})= & =0, \text { when } \mathrm{x}<-2 & & \\
& =1 / 10, & & \text { when }-2 \leq x<-1 \\
& =1 / 6, & & \text { when }-1 \leq x<0 \\
& =11 / 30, & & \text { when } 0 \leq x<1 \\
& =1 / 2, & & \text { when } 1 \leq x<2 \\
& =4 / 5, & & \text { when } 2 \leq x<3 \\
& =1, & & \text { when } 3 \leq x
\end{aligned}
$$

-OR-

Q. 1 For the bivariate probability distribution of (X, Y) given below, find $\mathrm{P}(\mathrm{X} \leq 1)$, $P(Y \leq 3), P(X \leq 1, Y \leq 3)$, and $P(X \leq 1 / Y \leq 3)$.

\mathbf{X}	1	2	3	4	5	6
0	0	0	$1 / 32$	$2 / 32$	$2 / 32$	$3 / 32$
1	$1 / 16$	$1 / 16$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$
2	$1 / 32$	$1 / 32$	$1 / 64$	$1 / 64$	0	$2 / 64$

Answer:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X} \leq 1)=\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1) \\
&=\sum_{j=1}^{6} P(\mathrm{X}=0, \mathrm{Y}=\mathrm{j}) \quad+\sum_{j=1}^{6} P(\mathrm{X}=1, \mathrm{Y}=\mathrm{j}) \\
&=(0+0+1 / 32+2 / 32+2 / 32+3 / 32)+(1 / 16+1 / 16+1 / 8+1 / 8+1 / 8+1 / 8) \\
&=7 / 8
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P}(\mathrm{Y} \leq 3)=\mathrm{P} & (\mathrm{Y}=1)+\mathrm{P}(\mathrm{Y}=2)+\mathrm{P}(\mathrm{Y}=3) \\
& =\sum_{i=0}^{2} P(\mathrm{X}=\mathrm{i}, \mathrm{Y}=1)+\sum_{i=0}^{2} P(\mathrm{X}=\mathrm{i}, \mathrm{Y}=2)+\sum_{i=0}^{2} P(\mathrm{X}=\mathrm{i}, \mathrm{Y}=3) \\
& =\mathbf{2 3} / \mathbf{6 4}
\end{aligned}
$$

$$
P(X \leq 1, Y \leq 3)=\sum_{j=1}^{3} P(\mathrm{X}=0, \mathrm{Y}=\mathrm{j})+\sum_{j=1}^{3} P(\mathrm{X}=1, \mathrm{Y}=\mathrm{j})
$$

$$
=9 / 32
$$

$$
P(X \leq 1 / Y \leq 3)=\frac{P(X \leq 1, Y \leq 3)}{P(Y \leq 3)}=\frac{9 / 32}{23 / 64}
$$

$$
=18 / 23
$$

Q. 2 Attempt any three

a) Prove that, $E\left\{(X-a)^{2}\right\}=E\left\{(X-\mu)^{2}\right\}+(\mu-a)^{2}$

Answer:

Let us consider the LHS $E\left\{(X-\mu)^{2}\right\}+(\mu-a)^{2}$

$$
\begin{aligned}
& \left.E\left\{X^{2}-2 \mu X+\mu^{2}\right)\right\}+\left(\mu^{2}+a^{2}-2 a \mu\right) \\
& E\left\{X^{2}\right)-\mu^{2}+\mu^{2}+a^{2}-2 a \mu \\
& E\left\{X^{2}\right)+a^{2}-2 a \mu
\end{aligned}
$$

Which can be written as
$E\left\{X^{2}+a^{2}-2 a X\right\}$ which is nothing but RHS.

$$
E\left\{(X-a)^{2}\right\}=E\left\{(X-\mu)^{2}\right\}+(\mu-a)^{2}
$$

b) State the axioms of probability. State and prove the theorem of total probability

Answer:

Axioms of probability
(i) $0 \leq \mathrm{P}(\mathrm{A}) \leq 1$
(ii) $\mathrm{P}(\mathrm{S})=1$
(iii) $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
(iv) If $A_{1}, A_{2}, \ldots \ldots . A_{n}$ are a set of mutually exclusive events then

$$
\mathrm{P}\left(\mathrm{~A}_{1} \cup \mathrm{~A}_{2} \ldots \cup \mathrm{~A}_{\mathrm{n}}\right)=\mathrm{P}\left(\mathrm{~A}_{1}\right)+\mathrm{P}\left(\mathrm{~A}_{2}\right)+\ldots+\mathrm{P}\left(\mathrm{~A}_{\mathrm{n}}\right)
$$

Theorem of total probability

If $B_{1}, B_{2}, \ldots \ldots, B_{n}$ be a set of exhaustive and mutually exclusive events then

$$
\mathbf{P}(\mathbf{A})=\sum_{i=1}^{n} \mathbf{P}(\mathbf{B i}) \mathbf{P}(\mathbf{A} / \mathbf{B i})
$$

c) State the properties of Probability distribution and density function.

Answer:

Properties of probability distribution functions

(i) $\quad F_{x}(x)$ is non-decreasing function of \mathbf{x}.
(ii) $\quad F_{x}(-\infty)=0$ and $F_{x}(\infty)=1$
(iii) $\frac{d}{d x} F_{X}(x)=f_{X}(x)$ at all points, where $F_{X}(x)$ is differentiable.
(iv) If X is discrete random variable taking values $x_{1}, x_{2}, x_{3}, \ldots$. Where $x_{1}<x_{2}<x_{3} \ldots, x_{i-1}<x_{i}<\ldots$ then $\mathrm{P}\left(\mathrm{X}=x_{i}\right)=F_{X}\left(x_{i}\right)-F_{X}\left(x_{i-1}\right)$

Properties of probability density function

forcontinuous random variable
(i) $\mathrm{f}(\mathrm{x}) \geq 0$ for all $\mathrm{x} \in \mathrm{R}_{\mathrm{x}}$
(ii) $\int_{\mathrm{Rx}} f(x) d x=1$
for discrete random variable
(i) $\mathrm{P}_{\mathrm{i}} \geq 0$ for all i
(ii) $\quad \sum_{i} \mathrm{Pi}=1$
d) Continuous random Variable has a $\operatorname{pdf} f(x)=3 x^{2}, 0 \leq x \leq 1$. Find a and b such that
(i) $P(X \leq a)=P(X>a)$
and (ii) $P(X>b)=0.05$

Answer:

(i) $\quad P(X \leq a)=P(X>a)$

$$
\begin{gathered}
\int_{0}^{a} 3 x^{2} d x=\int_{a}^{1} 3 x^{2} d x \\
\mathrm{a}^{3}=1-\mathrm{a}^{3} \\
\mathrm{a}^{3}=1 / 2 \\
\mathbf{a}=\mathbf{0} .7937
\end{gathered}
$$

(ii) $\quad P(X>b)=0.05$

$$
\begin{aligned}
& \int_{b}^{1} 3 x^{2} d x=0.05 \\
& b=0.9830
\end{aligned}
$$

