DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE - RAIGAD -402 103 Mid Semester Examination - October - 2017

Branch: M. Tech (Electrical Power System)

Sem.:- I

Subject with Subject Code:-Advanced Power Electronics(MTEPS103/MTEE102)

Marks: 20

Date:-10/10/2017 Time:- 1 Hr.

Marking Scheme

(Marks)

Q.No.1 Attempt any one of the following

(80)

a.) Explain the basic structure of MOSFET in detail with neat diagram.

- Explanation of the basic structure of MOSFET in detail :-04
- Figure of Vertical Cross Section:- 01

- **1.** Parasitic BJT. Held in cutoff by body-source short
- 2. Integral anti-parallel diode. Formed from parasitic BJT.
- 3. Extension of gate metallization over drain drift region. Field plate and accumulation layer functions.
- 4. Division of source into many small areas connected electrically in parallel. Maximizes gate width-to-channel length ratio in order to increase gain.
- 5. Lightly doped drain drift region. Determines blocking voltage rating.

• Figure of Perspective view of an n-channel or p-channel:-01

 Figure of gate electrode overlapping the drain drift region & Symbol of MOSFET:-02

Figure of gate electrode overlapping the drain drift region (a) to create an accumulated layer in the on state, (b) to act as a field plate in off state

Figure of circuit symbol of MOSFET

- b.) Explain the three phase semi converter with continuous output voltage.
- Explanation of three phase semi converter with circuit diagram:-04

Mode Volt	T_1D_2	D ₂ T ₃	T ₃ D ₄	D ₄ T ₅	T ₅ D ₆	D ₆ T ₁	T ₁ D ₄	T ₃ D ₆	T ₅ D ₂
\mathbf{v}_{T1}	0	V _{ab}	\mathbf{v}_{ab}	Vac	Vac	0	0	V_{ab}	Vac
V _{D2}	0	0	Vac	Var	V _{be}	V _{bc}	Vac	V_{bc}	0
V _{T3}	V _{ba}	0	0	V _{he}	V _{be}	V _{ba}	V _{ba}	0	V _{bc}
V_{D4}	Vca	V _{ca}	0	0	\mathbf{v}_{ba}	V _{ba}	0	V _{ba}	Vca
V _{Y5}	Vca	V _{cb}	V _{cb}	0	0	Vea	Vea	\mathbf{v}_{cb}	0
V_{D6}	V _{cb}	V _{cb}	V_{ab}	Vab	0	0	V_{ab}	0	V _{cb}
\mathbf{v}_{0}	Vac	V _{bc}	V _{ba}	V _{ca}	V _{cb}	Vab	0	0	0

(b)

Figure of Three phase Semi converter (a) Circuit Diagram (b) Conduction Table

Waveform with explanation:- 02

Waveform of Continuous output voltage

• Derivation of continuous output voltage and load current with boundary conditions and intervals:- 02

Q.No. 2 Attempt any three of the following: (12)

a.) Draw the basic structure, equivalent circuit, and symbol of MCT.

• Figure of Basic Structure of MCT:-02

• Figure of equivalent circuit of MCT:-01

• Figure of Symbol of MCT:-01

- b.) Write short notes on snubber circuit.
 - Types of snubber circuit:-
 - 1. RC snubbers

- 2. Diode snubbers
- 3. RCD snubbers

All diagram :-01

Explanation of each:-01

c.) How is the output voltage of a sinusoidal PWM Control converter varied?

- Waveform of Gate pulse generation with reference signal and carrier signal:-02
- Explanation of waveform with PF improvement:-02
- d.) Write in details methods of improving di/dt ratings of thyristor.

Figure of Thyristor with an auxiliary thyristor and gate assisted turn off thyristor:-02

- Explanation of following points :- 02
- Interdigitated gate-cathode structure used to greatly increase gate-cathode periphery.
- Distance from periphery to center of any cathode region significantly shortened.
- Ability of negative gate current to break latching condition in on-state increased.
- Combination of pilot thyristor, diode, and interdigitated gate-cathode geometry termed a gate-assisted turn-off thyristor or GATT
- Use of pilot thyristor to increase turn-on gate current to main thyristor.
- Larger gate current increases amount of initial conducting area of cathode and thus improves diF/dt capabilities.
- Diode allows negative gate current to flow from main SCR.