Dr. Babasaheb Ambedkar Technological University, Lonere Raigad Mid Semester Examination - October - 2017

Branch: M. Tech. (Mechanical Engg)
Sem. : I
Subject with subject code:
Marks: 20
Numerical methods and Computational Techniques
(MTE1103/MTF1103/MHP1103/MTH1103)
Date:
Time:

SOLUTION

Q. 1 Attempt any ONE of the following:
(a) $\mathrm{f}(\mathrm{t})=(70 * \exp (-1.5 * \mathrm{t}))+(25 * \exp (-0.075 * \mathrm{t}))-9.0$
$\operatorname{devf}(\mathrm{t})=\left(-105^{*} \exp (-1.5 * \mathrm{t})\right)+\left(-1.875^{*} \exp (-0.075 * \mathrm{t})\right)$
$\mathrm{t}=\mathrm{t} 0-\mathrm{f}(\mathrm{t}) / \operatorname{devf}(\mathrm{t})$
$\mathrm{dt} 0=((\mathrm{t}-\mathrm{t} 0) / \mathrm{t}) * 100.0$
The solution is converged and the value of the t is 13.62201 with error $\mathrm{dt} 0=6.2007673 \mathrm{E}$ 02
(b)

$$
f(c)=\frac{g m}{c}\left(1-e^{-(c / m) t}\right)-v
$$

$c_{1}=12$ and $c_{u}=16$ as function changes sign $-v e$ to $+v e$ and converges at sixth iteration with the root ie $\mathrm{c}=14.75$ and error is less than 0.5%
Q. 2 Attempt any THREE of the following:
(c) The density of a cube is measured by measuring its mass and the length of its sides. If the maximum errors in the measurement of mass and length are 3% and 2% respectively, find the maximum error in the measurement of density.
$\rho=\frac{m}{L^{3}}$
$\frac{\Delta \rho}{\rho}=\frac{\Delta m}{m}+3 \frac{\Delta L}{L}=0.03+3 X 0.02=0.09=9 \%$
(d) Evaluate the sum $S=\sqrt{3}+\sqrt{5}+\sqrt{7}$ to 4 significant digits and find its absolute and relative error.

$$
\begin{aligned}
& \sqrt{3}=1.732, \sqrt{5}=2.236, \sqrt{7}=2.646 \\
& S=6.614 \\
& \text { error }=0.0005+0.0005+0.0005=0.0015 \\
& \text { max } \text { error }=\frac{0.001}{2}=0.0005 \triangleleft 0.0015
\end{aligned}
$$

so correct significant no is three ie 6.61 and relative error is $0.0015 / 6.61=0.0002$.

