Model solutions for subject system identification of code MTCS102

Ans. 1 a) The Probability of an Event can be explained by two of the most popular definitions are: i) the relative frequency definition, and ii) the classical definition.

1: The relative frequency definition

Suppose that a random experiment is repeated n times. If the event A occurs n_{A} times, then the

$$
P(A)=\lim _{n \rightarrow \infty}\left(\frac{n_{A}}{n}\right)
$$

probability of A, denoted by $P(A)$, is defined as

For small values of n, it is likely that $\left(\frac{n_{A}}{n}\right)$ will fluctuate quite badly. But as n becomes larger and larger, we expect, $\left(\frac{n_{A}}{n}\right)$ to tend to a definite limiting value. For example, let the experiment be that of tossing a coin and A the event 'outcome of a toss is Head'. If n is the order of $100,\left(\frac{n_{A}}{n}\right)$ may not deviate from $1 / 2$ by more than, say ten percent and as n becomes larger and larger, we expect $\left(\frac{n_{A}}{n}\right)$ to converge to $1 / 2$.

2: The classical definition:

The relative frequency definition given above has empirical flavor. In the classical approach, the probability of the event A is found without experimentation. This is done by counting the total number N of the possible outcomes of the experiment. If N_{A} of those outcomes are favorable to the
occurrence of the event A, then

$$
P(A)=\frac{N_{A}}{N}
$$ where it is assumed that all outcomes are equally likely.

probability
measure (to the various events on the sample space) to obey the following
postulates or axioms:
P1) $P(A) \geq 0$
P2) $P(S)=1$
P3) $(A B)=\varphi$, then $P(A+B)=P(A)+P(B)$
the symbol + is used to mean two different things;
namely, to denote the union of A and B and to denote the addition of two real numbers). Using Eq. 2.3, it is possible for us to derive some additional relationships:
i) If $A B \neq \varphi$, then $P(A+B)=P(A)+P(B)-P(A B)$
ii) Let $A_{1}, A_{2}, \ldots \ldots, A_{n}$ be random events such that:
i) a) $A_{i} A_{j}=\varphi$, for $i \neq j$ and
ii) b) $A_{1}+A_{2}+\ldots \ldots+A_{n}=S$. (2.5b)
iii) Then, () () () ()PA=PAA1+PAA2+....+PAAn(2.6)
iv) where A is any event on the sample space.
v) Note: $A_{1}, A_{2}, \cdots, A_{n}$ are said to be mutually exclusive (Eq. 2.5a) and exhaustive
vi) \quad iii) $P(A)=1-P(A)$

Ans:2
Probability Density Function (PDF), $f_{X}(x)$ is defined as the derivative of the Cumulative Derivative function F; that is
$f_{x}(x)=\frac{d F_{x}(x)}{d x}$ or $F_{x}(x)=\int_{-\infty}^{x} f_{x}(\alpha) d \alpha$
The distribution function may fail to have a continuous derivative at a point $x=a$ for one of the two reasons:
i) the slope of the $f_{x}(x)$ is discontinuous at $x=a$
ii) $\quad f_{x}(x)$ has a step discontinuity at $x=a$

As can be seen from the figure, $f_{x}(x)$ has a discontinuous slope at $x=1$ and a step discontinuity at $x=2$. In the first case, we resolve the ambiguity by taking f_{x} to be a derivative on the right.

The second case is taken care of by introducing the impulse in the probability domain. That is, if there is a discontinuity in F_{x} at $x=a$ of magnitude P_{a}, we include an impulse $P_{a} \delta(x-a)$ in the PDF $f_{x}(x)=\frac{1}{4} \delta\left(x+\frac{1}{2}\right)+\frac{1}{8} \delta\left(x-\frac{1}{2}\right)+\frac{1}{8} \delta\left(x-\frac{3}{2}\right)+\frac{1}{2} \delta\left(x-\frac{5}{2}\right)$ As in $f_{x}(x)$ has an impulse of weight $1 / 8$ at $x=1 / 2$ as $P\left[x=\frac{1}{2}\right]=\frac{1}{8}$ This impulse function cannot be taken as the limiting case of an even function
 However, $\lim _{\varepsilon \rightarrow 0} \int_{1 / 2^{-\varepsilon}}^{1 / 2} f_{x}(x) d x=\frac{1}{8}$. This ensures

$$
F_{x}(x)= \begin{cases}\frac{2}{8}, & -\frac{1}{2} \leq x<\frac{1}{2} \\ \frac{3}{8}, & \frac{1}{2} \leq x<\frac{3}{2}\end{cases}
$$

Such an impulse is referred to as the left-sided delta function. As $F x$ is non-decreasing and $F_{X}(\infty)=1$ we have
i) $f_{x}(x) \geq 0$
ii) $\int_{-\infty}^{\infty} f_{x}(x) d x=1$

Based on the behavior of CDF, a random variable can be classified as:
i) continuous (ii) discrete and (iii) mixed. If the $\operatorname{CDF}, f_{X}(x)$ is a continuous function of x for all x, then X
1
is a continuous random variable. If $f_{X}(x)$ is a staircase, then X corresponds to a discrete variable. We say that X is a mixed random variable if $f_{X}(x)$ is discontinuous but not a staircase.

Ans. 2 a).
The mean value (also called the expected value, mathematical expectation or simply expectation) of random variable X is defined as

$$
m_{x}=E[X]=\bar{X}=\int^{\tilde{x}} x f_{x}(x) d x
$$

where E denotes the expectation operator. Note that m_{x} is a constant. Similarly the expected value of a function of $X, g(X)$, is defined by

$$
E[g(X)]=\overline{g(X)}=\int_{-\infty}^{\infty} g(x) f_{x}(x) d x
$$

For the special case of $g(X)=X^{n}$, we obtain the n-th moment of the probability distribution of the $\mathrm{RV}, \quad X$; that is,
$E\left[X^{n}\right]=\int_{-\infty}^{\infty} x^{n} f_{x}(x) d x$
The most widely used moments are the first moment ($n=1$, which results in the mean value of Eq. 2.38) and the second moment ($n=2$, resulting in the mean square value of X).
2. b)

Coming back to the central moments, we have the first central mome jeing always zero because,

$$
\begin{aligned}
E\left[\left(x-m_{x}\right)\right] & =\int_{-\infty}^{\infty}\left(x-m_{x}\right) f_{x}(x) d x \\
& =m_{x}-m_{x}=0
\end{aligned}
$$

Zonsider the second central moment

$$
E\left[\left(X-m_{x}\right)^{2}\right]=E\left[X^{2}-2 m_{x} X+m_{x}^{2}\right]
$$

=rom the linearity property of expectation,

$$
\begin{aligned}
E\left[X^{2}-2 m_{x} X+m_{x}^{2}\right] & =E\left[X^{2}\right]-2 m_{x} E[X]+m_{x}^{2} \\
& =E\left[X^{2}\right]-2 m_{x}^{2}+m_{x}^{2} \\
& =\overline{x^{2}}-m_{x}^{2}=\overline{X^{2}}-[\bar{x}]^{2}
\end{aligned}
$$

The second central moment of a random variable is called the variance and its (positive) square root is called the standard deviation. The symbol σ^{2} is generally used to denote the variance. (If necessary, we use a subscript on σ^{2})

The variance provides a measure of the variable's spread or randomness. Specifying the variance essentially constrains the effective width of the density function. This can be made more precise with the help of the Chebyshev

2.d)

iii) Gaussian

By far the most widely used PDF, in the context of communication theory is the Gaussian (also called normal) density, specified by

$$
\begin{equation*}
f_{x}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{x}} \exp \left[-\frac{\left(x-m_{x}\right)^{2}}{2 \sigma_{x}^{2}}\right],-\infty<x<\infty \tag{2.56}
\end{equation*}
$$

where m_{x} is the mean value and σ_{x}^{2} the variance. That is, the Gaussian PDF is completely specified by the two parameters, m_{x} and σ_{x}^{2}. We use the symbol $N\left(m_{x}, \sigma_{x}^{2}\right)$ to denote the Gaussian density ${ }^{1}$. In appendix A2.3, we show that $f_{x}(x)$ as given by Eq. 2.56 is a valid PDF.

Hence $F_{x}\left(m_{x}\right)=\int_{-\infty}^{m_{x}} f_{x}(x) d x=0.5$
Consider $P[X \geq a]$. We have,

$$
P[X \geq a]=\int_{a}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma_{x}} \exp \left[-\frac{\left(x-m_{x}\right)^{2}}{2 \sigma_{x}^{2}}\right] d x
$$

This integral cannot be evaluated in closed form. By making a change of variable $z=\left(\frac{x-m_{x}}{\sigma_{x}}\right)$, we have

$$
\begin{aligned}
P[X \geq a] & =\int_{\frac{a-m_{x}}{\sigma_{x}}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z \\
& =Q\left(\frac{a-m_{x}}{\sigma_{x}}\right)
\end{aligned}
$$

where $Q(y)=\int_{y}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) d x$
Note that the integrand on the RHS of Eq. 2.57 is $N(0,1)$.

