Ffor ol Solubons cas peoreo|
. ey ore e
Q 4 g2om Covmen

d> L Le O{eﬂree = "I”’W“CHOTO s
'A'ij)\’\"’)m,
no.o%K%t t+-1, 2k
TN S

childven (o) ()
CRGAUERGME WLTZDPR®YS

pelete Kk —> Caue >k

Que .1 $)
Blr\omiaj heap

= 2D 10 £

1> Onsed 10 2¢ 2010 5 w,,f@_@ Q(
Ins
Cane 4 !
g 30

9‘7 Inseat 350 @_ @ @/?afjf;@ ’
Cane 3 @ @ @

S
Cane 3 6 @ @ @ @
20

O ® e

Que- 24
_/
Qluho?

bt dﬂg@vﬁhm e = gﬂﬁ\eﬂ‘ouv&
Shor Yest PQZH/\ / LUJ)/\}CJA A LLDW) E@,/
h%mﬁvﬁ egbe ngk% and can defect
W%cdﬂ‘ve eycles in o geaph
:nggfm 0"}30 Us also S§n3(€ ~Soune
Q}\D/\/’\'@‘/ Po&h” O\.@O . ‘How,e \/\U\) H~e WBL\'F
% ! Qo‘j«% st e nonrneﬂodﬁ\/e

) @ellman P79 A0 hoe oCVIIED)
C@ww&okeo&f’r\j
how @[C\El»r\\/})tgj@p

C/@,W_,\/)\efb(j'\"j.
The LS5 Radanids b—orJ C\kjocg nod el
Contad » QY\\\/ . "V‘B_OYW‘OU’""OW ot
e WOULQJ «h)_ﬂhtls ampo allows
Hhat oy oo \\)\LA%’ 4o Bnowd about widcl,
Nned ghboy NOAE
e node Hrod the
'«’D)ZOM muj\/\ally |
P‘J‘\i/g*‘ﬂ’\‘) Ma@ condahns who ' €
IngT Of
Lf) ZDUY\S’\’ A W?‘O (S

Betman = fore™ ”Jﬁo Bot Belman-

be wmeve

FOW{ (an
to ;olfx\ijo%vjﬂe pro blerms, outh
A y\eﬁaﬁf‘p WQ/}W) 46 &?ad’lq)

3)

Can 1t conned and
celatlon come

Que.2b-

Soluhon -

Q2c) Suppose that the graph G = (V, E) is represented as an adjacency matrix. Give a simple
implementation of Prim's algorithm for this case that runs in O(V2) time.

Solution:

We would need to sort through V twice. On line 8, rather than the adjacency list, we would loop from
l1toV.

Here's what it would look like:
MST-PRIM(G, r) /* G=(V, E) */

1.Fori=1toV
2.Dist[i]=c0

3 Pred(i]=o0

4.Dist[r]=0

5 CREATE minimum priority queue, Q, for indexes of vertices
6 If Q not empty

7. i=EXTRACT-MIN(Q)

8. Forj=1toV

9. If m[i,j]=1

101fjis in Q and weight(i, j) < dist[j]
11. Pred[jl=weight (i,j)

g2 A

d.) Explain the structure of fibonacci heaps.

Ans) Structure of Fibonacci heaps

Like a binomial heap, a Fibonacci heap is a collection of min-heap-ordered trees.
The trees in a Fibonacci heap are not constrained to be binomial trees, however.
Figure @@(a) shows an example of a Fibonacci heap.

Unlike trees within binomial heaps, which are ordered, trees within Fibonacci
heaps are rooted but unordered. As Figure 20.1(b) shows, each node x contains

a pointer p[x] to its parent and a pointer child[x] to any one of its children. The
children of x are linked together in a circular, doubly linked list, which we call
the child list of x. Each child y in a child list has pointers left[y] and right[y]

that point to y’s left and right siblings, respectively. If node y is an only child,
then left[y] = right[y] = y. The order in which siblings appear in a child list is
arbitrary.

Circular, doubly linked lists (e2 Sectionddi2) have two advantages for use in
Fibonacci heaps. First, we can remove a node from a circular, doubly linked list
in O(1) time. Second, given two such lists, we can concatenate them (or “splice”
them together) into one circular, doubly linked list in O(1) time. In the descriptions
of Fibonacci heap operations, we shall refer to these operations informally, letting
the reader fill in the details of their implementations.

min[H]

& D)

(b)

Figure (a) A Fibonacci heap consisting of five min-heap-ordered trees and 14 nodes. The

dashed line indicates the root list. The minimum node of the heap is the node containing the key
3.The three marked nodes are blackened. The potential of this particular Fibonacci heap is 5+2-3
=11.

(b) A more complete representation showing pointers p (up arrows), child (down arrows), and left
and right (sideways arrows). These details are omitted .

all the information shown here can be determined from what appears in part (a).

Two other fields in each node will be of use. The number of children in the child
list of node x is stored in degree[x]. The boolean-valued field mark[x] indicates
whether node x has lost a child since the last time x was made the child of another
node. Newly created nodes are unmarked, and a node x becomes unmarked when-
ever it is made the child of another node. Until we look at the D ECREASE -K EY
operation , we will just set all mark fields to FALSE.

A given Fibonacci heap H is accessed by a pointer min[H] to the root of a tree
containing a minimum key; this node is called the minimum node of the Fibonacci
heap. If a Fibonacci heap H is empty, then min[H] = NIL.

The roots of all the trees in a Fibonacci heap are linked together using their

left and right pointers into a circular, doubly linked list called the root list of the
Fibonacci heap. The pointer min[H] thus points to the node in the root list whose
key is minimum. The order of the trees within a root list is arbitrary.

We rely on one other attribute for a Fibonacci heap H : the number of nodes
currently in H is kept in n[H].

	1
	2
	3
	4
	5
	6
	7
	8
	9

