MODEL ANSWER OF MME1102
ENGINEERING THERMODYNAMICS

Q1.a)

The Kelvin-Planck srarement of the second law states: [t is impossible for a
heat engine fo produce net work in a complere cyele if it exchanges hear only
with bodies ar a single fived remperature.

Clausius’ statement of the second law gives: It is impossible to construct a
device which, operating in a cycle, will produce no effect other than the transfer
of heat from a cooler to a hotter body.

The equivalence of the two statements will be proved if it can be shown that
the violation of one statement implies the violation of the second, and vice versa.
(a) Let us first consider a cyclic heat pump P which transfers heat from a low
temperature reservoir (r,) to a high temperature reservoir (f,) with no other effect,
i.e., with no expenditure of work, violating Clausius statement
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Violation of the Clausius statement

Let us assume a cyclic heat engine E operating between the same thermal
energy reservoirs, producing W _, in one cycle. The rate of working of the heat
engine is such that it draws an amount of heat O, fror: the hot reservoir equal to
that discharged by the heat pump. Then the hot reservoir may be eliminated and
the heat @, discharged by the heat pump is fed to the heat engine. So we see that
the heat pump £ and the heat engine E acting together constitute a heat engine



operating in cycles and producing net work while exchanging heat only with one
body at a single fixed temperature. This violates the Kelvin-Planck statement.

{(b) Let us now consider a perpetual motion machine of the second kind (£)
which produces net work in a cycle by exchanging heat with only one thermal
encergy reservoir (at ) and thus violates the Kelvin-Planck statement

Let us assume a cyelic heat pump (FP) extracting heat O, from a low
temperature reservoir at £, and discharging heat to the high temperature reservoir
at r, with the expenditure of work I equal to what the PMM2 delivers in a
complete cycle. So £ and P together constitute a heat pump working in cycles and
producing the sole effect of transferring heat from a lower to a higher temperature
body, thus violating the Clausius statement.
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Vielation of the Kelvin-Planck statement

From (a) and (b) it can be deduced that both statements are equivalent

Q1b)
Entropy can be transferred to or from a system in two forms: heat transfer and
mass flow.



(a) Heat Transfer Since dS= -dQT"“, when heat is added to a system 4 Q is

positive, and the entropy of the system increases. When heat is removed from
the system, dQ is negative, and the entropy of the system decreases.

Heat transferred to the system of fixed mass increases the internal energy of
the system, as a result of which the molecules (of a gas) move with higher
kinetic energy and collide more frequently, and so the disorder in the system
increases. Heat is thus regarded as disorganised or disordered energy transfer
which increases molecular chaos If heat Q flows reversibly
from the system to the surroundings at 7 the entropy increasc of
the surroundings is
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The entropy of the system is reduced by
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The temperature of the boundary where heat transfer occurs is the constant
temperature 7, It may be said that the system has lost entropy to the
surroundings. Alternatively, one may state that the surroundings have gained

entropy from the system. Therefore, there is entropy rransfer from the system
to the surroundings along with heat flow. In other words, since the heat inflow
increases the molecular disorder, there is flow of disorder along with heat. The
sign of entropy transfer is the same as the sign of heat transfer: posirive, if into
the system, and negarive, if out of the system.

Entropy transfer along with heat flowe

On the other hand, rthere is no entropy transfer associated with work. In
the system delivers work to a flywheel, where energy is stored in a

fully recoverable form. The flywheel molecules are simply put into rotation
around the axis in a perfectly organised manner, and there is no dissipation and
hence no entropy increase of the flywheel. The same can be said about work
transfer in the compression of a spring or in the raising of a weight by a certain
height. There is thus no entropy transfer along with work. If work is dissipated
adiabatically into intermal energy increase of the system
there is an entropy increase in the system, but there is as such no entropy
transfer to it

Work is thus entropy-free, and no entropy is transferred with work. Energy
is transferred with both heat and work, whereas entropy is transferred only
with heat. The first law of thermodynamics makes no distinction between heat
transfer and work. It considers them as equals. The distinction between heat
transfer and work is brought about by the second law: an energy interaction
which is accompanied by enrropy transfer is hear rransfer, and an energy
interaction which is not accompanied by entropy transfer is work. Thus, only
energy is exchanged during work interaction, whereas both ene-gy and entropy
are exchanged during heat transfer.



(b) Mass Flow Mass contains entropy as well as energy, and the entropy and
energy of a system are proportional to the mass. When the mass of a system is
doubled, so are the entropy and energy of the system. Both entropy and energy
are carried into or out of a system by streams of matter, and the rates of entropy
and energy transport into or out of a system are proportional to the mass flow
rate. Closed systems do not involve any mass flow and thus any entropy
transport. When an amount of mass m enters or leaves a system, an entropy of
amount ms, s being the specific entropy, accompanies it. Therefore, the entropy
of a system increases by ms when the mass of amount m enters it, and decreases
by the same amount when it leaves it at the same state.

No entropy transfer aiang wm'a work transfer
Q2 a)

The efficiency of any heat engine cycle receiving heat 0, and rejecting heat 0, is
given by
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By the second law, it is necessary to have a temperature difference (¢, - ;) to
obtain work of any cycle. We know that the efficiency of all heat engines
operating between the same temperature levels is the same, and it is independent
of the working substance. Therefore, for a reversible cycle (Camot cycle), the
efficiency will depend solely upon the temperatures ¢, and ,, at which heat is
transferred, or
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where fsignifies some function of the temperatures.



1 - %‘ = (8, 13)
In terms of a new funclion F
‘g; = F(1y, 13)

If some functional relationship is assigned between ry, 7» and O,/Q,. the
equation becomes the definition of a temperature scale.

Let us consider two reversible heat engines, £, receiving heat from the source
at ,, and rejecting heat at 7, to E, which, in turn, rejects heat to the sink at 7,

Now ‘g’; = F(#y, 12); ‘% FA(t3, 13)
£, and £; together constitute another heat engine £ operating between f;, and r,.
O,
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The temperatures 1,, #> and r, are arbitrarily chosen. The ratio Q,/Q; depends
only on 7, and r,, and is independent of 7;. So 73 will drop out from the ratio on the
right in equation After it has been cancelled, the numerator can be written
as ¢(r,). and the denominator as ¢(7;). where ¢ is another unknown function.
Thus



o9 = F(t), 1) = 1)
O, 1)
Since ¢(7) 1s an arbitrary function, the simplest possible way to define the
absolute thermodynamic temperature T is to let ¢(r) = T, as proposed by Kelvin.
Then, by definition
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The absolute thermodynamic temperature scale is also known as the Kelvin
scale. '

The heat absc:™ 1 @, and the heat rejected Q, during the two reversible
isothermal processes bounded by two reversible adiabatics in a Camot engine
can be measured. In defining the Kelvin temperature scale also, the triple point of
water is taken as the standard reference point. For a Camot engine operating
between reservoirs at temperatures 7 and 7,, T, being the triple point of water

arbitrarily assigned the value 273.16 K,
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If this equation is compared with the equations given in Article 2.3, it is seen
that in the Kelvin scale, Q plays the role of thermometric property. The amount
of heat supply Q changes with change in temperature, just like the thermal emfin
a thermocouple.

It follows

T=273.16 -2

Q2c)



The entropy of any closed system can increase in two ways:

{(a) by heat interaction in which there is entropy transfer
(b) internal irreversibilities or dissipative effects in which work (or K.E.) is

dissipated into internal energy increase.

If &4 Q is the infinitesimal amount of heat transferred to the system through
its boundary at temperature T, the same as that of the surroundings, the entropy
increase dS of the system can be expressed as

AdsS=d_ S+ d,S

a
where d_.S is the entropy increase due to external heat interaction and d, 5 is the
entropy increase due to internal irreversibility.
ag
ds = T
. d5 =0
The entropy increase due to internal irreversibility is also called entropy

production or entropy generation, S__.
In other words. the entropy change of a system during a process is greater

than the entropy transfer (& Q/7) by an amount equal to the entropy generated
during the process within the system (d,5). so that the enrropy balance gives:
Entropy change = Entropy transfer + Entropy generation
AS, sem = ASipafer + AS
which is a verbal statement o and illustrated

It may so happen that in a process (e.g., the expansion of a hot fluid in a
turbine) the entropy decrease of the system due to heat loss to the surroundings

[— j% is equal to the entropy increase of the system due to internal



Titustration of the entropy transfer and entropy production concepls.

irreversibilities such as friction, etc. [IdiS). in which case the entropy of the

system before and after the process will remain the same (IdS = {]) . Therefore,
an isentropic process need not be adiabatic or reversible.

But if the isentropic process is reversible, it must be adiabatic. Also, if the
isentropic process is adiabatic, it cannot but be reversible. An adiabatic process
need not be isentropic, since entropy can also increase due to friction etc. But if
the process is adiabatic and reversible, it must be isentropic.

For an infinitesimal reversible process by a closed system,

ad Qg = dUy + pdV

If the process is irreversible,

d0,=au,+aw
Since U is a property,
dUﬂ == dU.

d0p - pdV =480, - AW
o [_ng -(42) + oY =¥
|
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The difference (pdV - dW) indicates the work that is lost due to
irreversibility, and is called the lost work & (LW), which approaches zero as the
process approaches reversibility as a limit. can be expressed in
the form

dS =4S+ ds

Thus the entropy of a closed system increases due to heat addition (d_S) and

internal dissipation (d,5).



Q2d)

Let us consider a cycle A8CD Let AL be a general process, either
reversible or irreversible, while the other processes in the cycle are reversible.
Let the cycle be divided into a number of elementary cycles, as shown. For one

of these elementary cycles
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Ineguality of Clausius
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where @O is the heat supplied at T, and &4 Q, the heat rejected at 7.
MNow, the efficiency of a general cycle will be equal to or less than the
efficiency of a reversible cycle.
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or ﬂ = a0, , for any process 4B, reversible or irreversible.
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For a reversible process

a0, a0,
ds = —<rev _ T2
T T
Hence, for any process AB

a0 < ds
T



For any infinitesimal process undergone by a system, we have
for the total mass

as> 92
T

For an isolated system which does not undergo any energy interaction with

the surroundings, ¢ Q = 0.
Therefore, for an isolated system
ds,, 20

For a reversible process,
dS,,, =0

or S = constant

For an irreversible process
ds,, >0
It is thus proved that the entropy of an isolated system can never decrease. It
always increases and remains constant only when the process is reversible.
This is known as the principle of increase of entropy, or simply the entropy
principle. It is the quantitative general statement of second law from the

macroscopic viewpoint.
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