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Q.No.1 Explain briefly any one of the following

a.) Euler Savary Equation                             (08 Marks)
Euler savary equation gives the radius of curvature and the centre of curvature of a coupler 
curve in rather direct fashion. The so-called inflection circle shows the location of coupler 
points whose curves have an infinite radius of curvature.
When two rigid bodies  move relative  to  each other  with  planar  motion,  any arbitrarily
chosen point A of one describes a path or locus relative to a coordinate system fixed to the
other. At any given instant there is a point A', attached to the other body, which is the center
of curvature of the locus of  A.  If we take the kinematic inversion of this motion,  A'  also
describes a locus relative to the body containing A, and it so happens that A is the center of
curvature of this locus. Each point therefore acts as the center of curvature of the path traced
by the other, and the two points are called conjugates of each other. The distance between
these two conjugate points is the radius of curvature of either locus. Figure 4.24 shows two
circles  with centers  at  C and  C'.  Let  us think of  the circle  with center  C'  as  the fixed
centrode  and  think  of  the  circle  with  center  C  as  the  moving  centrode  of  two  bodies
experiencing some particular relative planar motion.  In actuality, the fixed centrode need
not be fixed but is attached to the body that contains the path whose curvature is sought.
Also,  it  is  not  necessary  that  the  two  centrodes  be  circles;  we  are  interested  only  in
instantaneous  values  and,  for  convenience,  we  will  think  of  the  centrodes  as  circles
matching the curvatures of the two actual centrodes in the region near their point of contact
P. W
hen the bodies containing the two centrodes move relative to each other,  the centrodes
appear to roll against each other without slip. Their point of contact  P,  of course, is the
instant center of velocity. Because of these properties,  we can think of the two circular
centrodes as  actually  representing the shapes of  the two moving bodies if  this  helps in
visualizing the motion.
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b.) Bobillier construction                                        (08 Marks)
           The Hartmann construction provides one graphical method of finding the conjugate
point and the radius of curvature of the path of a moving point, but it requires knowledge of
the curvature of the fixed and moving centrodes. It would be desirable to have graphical
methods  of  obtaining  the  inflection  circle  and  the  conjugate  of  a  given  point  without
requiring  the  curvature  of  the  centrodes.  Such graphical  solutions  are  presented  in  this
section  and  are  called  the  Bobillier  constructions.To  understand  these  constructions,
consider the inflection circle and the centrode normal N and centrode tangent T shown in
Fig. below. Let us select any two points A and B of the moving body which are not on a
straight  line through P.  Now,  by using the  Euler-Savary equation,  we can find the  two
corresponding conjugate points A' and B'.  The intersection of the lines AB and A' B' is
labeled Q. Then, the straight line drawn through P and Q is called the collineation axis. This
axis applies only to the two lines AA' and BB' and so is said to belong to these two rays;
also, the point Q will be located differently on the collineation axis if another set of points A
and B is chosen on the same rays. Nevertheless, there is a unique relationship between the
collineation  axis  and  the  two  rays  used  to  define  it.  This  relationship  is  expressed  in
Bobillier's theorem, which states that the angle from the centrode tangent to one of these
rays is the negative of the angle from the collineation axis to the other ray.
In applying the Euler-Savary equation to a planar mechanism, we can usually find two pairs
of conjugate points by inspection, and from these we wish to determine the inflection circle
graphically. For example, a four-bar linkage with a crank 02A and a follower 04B has A and
O2 as one set of conjugate points and Band 04 as the other, when we are interested in the
motion of the coupler relative to the frame. Given these two pairs of conjugate points, how
do we use the Bobillier theorem to find the inflection circle?
let A and A' and Band B' represent the known pairs of conjugate points. Rays constructed
through each pair  intersect  at  P,  the  instant  center  of  velocity,  giving one  point  on the
inflection circle. Point Q is located next by the intersection of a ray through A and B with a
ray through A' and B'. Then the collineation axis can be drawn as the line PQ. Drawing a
straight line through P parallel to A' B', we identify the point W as the intersection of this
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line with the line AB. Now, through W we draw a second line parallel to the collineation
axis.

Fig. 4.27 Bobillier construction
This line intersects AA' at IA and BB' at Is, the two additional points on the inflection circle
for which we are searching. We could now construct the circle through the three points IA,
Is, and P, but there is an easier way. Remembering that a triangle inscribed in a semicircle is
a right triangle having the diameter as its hypotenuse, we erect a perpendicular to A P at IA
and another perpendicular to B P at Is. The intersection of these two perpendiculars gives
point I, the inflection pole. Because PI is the diameter, the inflection circle, the centrode
normal  N,  and  the  centrode  tangent  T can  all  be  easily  constructed.  To show that  this
construction satisfies the Bobillier theorem, note that the arc from P to IA is inscribed by the
angle that lAP makes with the centrode tangent. But this same arc is also inscribed by the
angle PIsIA. Therefore these two angles are equal. 

Q.No. 2 Write short note on (Attempt any three of the following)       
                   a.) Method of Normal Accelerations                      (04 Mark)

This method is applicable only to mechanisms having a low degree of complexity. It
is also useful as a supplement to the auxiliary-point method for certain mechanisms
with a high degree of complexity when the latter method alone is not sufficient. The
underlying principle of the method is that the acceleration component of a point P on
a  constrained  link,  in  a  direction  perpendicular  to  its  velocity  (called  normal
component), is independent of the angular acceleration of the link. 
The steps to be followed in applying this method are:

1.Transform the mechanism into a simple one by changing the input link.
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2.Carry out the velocity analysis with this alternative input link, and determine the 
true velocities. 

3.Draw an auxiliary acceleration diagram based on true velocities and zero 
acceleration of the alternative input link. Determine the normal component of 
acceleration of the floating point which has a path of unknown radius of curvature.

4.Construct the true acceleration diagram with the actual input acceleration, using the
information obtained in steps 1-3.

b.) Auxiliary Point Method                                     (04 Mark)

The auxiliary-point method is very powerful and is applicable to all low-complexity
mechanism:  and  to  most  high-complexity  mechanisms.  In  certain  cases  of
high-complexity mechanisms, this method alone may not be sufficient and has to be
used in conjunction with the method of normal components.
In this method, the auxiliary points are determined on the higher-order floating link at
the intersection of auxiliary lines drawn through the motion-transfer point of the link in
directions  along  which  components  of  velocities  and  accelerations  can  be  obtained.
Two such auxiliary points are sufficient. The velocity and acceleration components of
these two auxiliary points are obtained in two auxiliary directions (along which they
lie). Thereby, the vector itself can he obtained. Once the velocities and accelerations of
the two auxiliary points have been determined, the analysis can be completed with the
help of images of the floating links.

c.) Fixed and Moving Centrodes                                 (04 Mark)
The        location     of   an   instant   center of     velocity is  defined only

Different curve on link 3. For the original linkage, with link 1fixed, this is the curve traced by PI3 on the
coordinate system of the moving link 3; it is called the moving centrode.
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d.) Cubic of Stationary Curvature                       (04 Mark)                    
Consider a point on the coupler of a planar four-bar linkage that generates a path

relative to the frame whose radius of curvature, at the instant considered, is p. For most
cases,  because  the  coupler  curve  is  of  sixth  order,  this  radius  of  curvature  changes
continuously  as  the  point  moves.  In  certain  situations,  however,  the  path  will  have
stationary curvature, which means that

where s is the increment traveled along the path. The locus of all points on the coupler
or moving plane which have stationary curvature at the instant considered is called the
cubic of stationary curvature or sometimes the circling-point curve. It should be noted
that stationary curvature does not necessarily mean constant curvature, but rather that
the continually varying radius of curvature is passing through a maximum or minimum.
Here we will  present  a  fast  and simple  graphical  method for  obtaining the  cubic  of
stationary curvature. In Fig. below we have a four-bar linkage A' AB B', with A' and B'
the  frame  pivots.  Then  points  A and  B  have  stationary  curvature-in  fact,  constant
curvature about centers at A' and B'; hence, A and B lie on the cubic. The first step of
the construction is  to  obtain  the centrode  normal  and centrode tangent.  Because  the
inflection circle is not needed, we locate the collineation axis PQ as shown and draw
the centrode tangent T at the angle  1/1 from the line PA' to the collineation axis. This
construction follows directly from Bobillier's theorem. We also construct the centrode
normal N. At this point it may be convenient to reorient the drawing on the working
surface  so  that  the  T-square  or  horizontal  lies  along  the  centrode  normal.  Next  we
construct  a  line  through  A  perpendicular  to  PA  and  another  line  through  B
perpendicular to PB. These lines intersect the centrode normal and centrode tangent at
AN, AT and BN, BT, respectively, as shown in fig. Now we draw the two rectangles
PAN AG A T and P BNBG BT; the points AG and BG define an auxiliary line G that we
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will use to obtain other points on the cubic. Next we choose any point SG on the line
G. A ray parallel to N locates ST, and another ray parallel to T locates SN.

Connecting ST with SN and drawing a perpendicular to this line through P locates point
S, another point  on the cubic of  stationary curvature. We now repeat  this process as
often as desired by choosing different points on G, and we draw the cubic as a smooth
curve through all the points S obtained. 
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