DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE - RAIGAD -402 103

Mid Semester Examination – October - 2017

Branch: (Elect./Extc./Comp/IT/Instru/Biomedical)
Sem.:- I

Model Answer for the paper

Subject with Subject Code:- Basic Electrical Engineering [EE104]

Marks: 20

Q.No.1. Attempt any three of the following (3 x 2marks) (06)

1. Define power and energy write their SI units.

Ans:

Electrical power is the rate of work done It is the rate of doing work. Its units is watt (W) which represents 1 joule per second. 1 W = 1 J/s

or which gives rate of change of energy with time and is equal to power. The SI derived unit for power (P) is watt expressed as Joule per sec. $P=dw/dt=V \times I - \dots (1 M)$

Energy

It is the the capacity of doing the work and its SI unit is watts-sec or joules. - ----- (1 M) E=P x t Jouel.

2. State Maximum Power Transfer Theorem.

Ans.: This theorem may be stated as follows:

A resistive load will abstract maximum power from a network when the load resistance is equal to the resistance of the network as viewed from the output terminals, with all energy sources removed leaving behind their internal resistances. ----- (2 M)

 $R_L = R_{th}$

3. State the effect of temperature on resistance of 1. Aluminium 2. Eureka.

2. <u>Eureka</u>: Eureka is alloy so, with as increase in temperature resistance increases slightly. (1 M)

^{*} M in bracket for marks.

4. Find the equivalent resistance across terminal A and B.

Solution:

Resistance of branch $ACD = 5 \parallel 15 = (5 \times 15)/(5+15) = 3.75 \Omega$ (Figure b.) ----- (1/2 M)

Resistance of branch $BCD = 10 \parallel 8 = (10 \times 8)/(10 + 8) = 4.44 \Omega$ (figure c) ----- (1/2 M) Resistance between A and $B = 3.75 + 4.44 = 8.19 \Omega$ ----- (1 M)

Q.No. 2 Attempt any one of the following: (1x 6) (06)

- **a.)** A water immersion heater develops 1800000 K Joules heat energy to boil the water 20 °C to 70 °C when connected across 240volt supply. The heater has resistance of 50 Ω and heat efficiency is 85 %. Determine 1. volume of water .
- 2. Input energy.
- 3. Time required to boil the water.

Assume specific heat of water 4200 J/kg C.

solution: Given

Heat produced electrically H = 1800,000 Joules, $t_1=20$ °C and $t_2=70$ °C ,efficiency =85%, V= 240 V ,Specific heat capacity S=4200 J / Kg °C Resistance of heater =50 Ω .

volume or mass of water:(m)

H=m x s x Δ T = m x 4200 x (70-20)=2,10,000m

$$m = H / 210000 = 1800000 / 210000 = 8.57 kg.$$
 ----- (2 M)

In put Energy: Ei to heater : Ei= H / efficiency =1800000 /0.85 =2117647.058 J. ---- (2 M)

Time required to boil the water :(t)

$$Ei = (V^2 / R) \times t = (240^2 / 50) t$$

 $t=Ei x(50/240^{\circ}) = 2117647.058 x (50/240^{\circ}) = 1838.235 sec.$

t=1838.235 / 60 = 30.63 min. ----- (2 M)

b.) Determine current flowing through 5 Ω register using superposition theorem.

solution: Assume terminals of 5Ω as A & B.

Step 1

6-volt battery has been removed. Fig(b)

Calculate the current I_{AB} due to 4 Amp current source

Resistance 5 and 4 are in series = $(4 + 5) = 9\Omega$ (Fig c)

Using current division rule, $I_{AB 1}=4 \times [3/(3+9)]=1 A$ ---- (2 M)

Step 2

4 A current source has been removed. (Fig. d)

Calculate the current I_{BA} due to 6 -volt battery.

Total resistance = $(3 + 5) \parallel 4 = (8 \times 4)/(8+4) = 32/12 = 2.66 \Omega$

I = 6/2.66 = 2.25 A.

Using current division rule , I_{BA} = 2.25 x [4/(4+8)]=0.75 A (Fig. e) I_{AB2} = -0.75 A -----(2 M)

Step 3 find IAB

$$I_{AB=} I_{AB1} + I_{AB2} = 1 A - 0.75 A = 0.25 A$$
 ----- (2 M)

Q. No 3. Attempt any two of the following $(2 \times 4 = 8)$ (08)

1. Find the current through 10-ohm resistance using loop analysis.

Solution:

For loop 1 Applying KVL, we get

$$-5I1 - 3(I1 - I2) + 5 = 0 \text{ or } 15I1 - 10I2 = 4...(i)$$
 -----(1M)

For loop 2 Applying KVL, we have

$$-8 I2 - 10(I2 - I_1) - 6 = 0$$
 or $10I1 - 18 I2 = 6$ or $5I1 - 9I2 = 3$...(ii) -----(1M)

Solve simultaneous equation find I1 & I2 -----(1M)

Multiply equation (2) by 3 and add to equation (1)

$$17I2 = -9 + 4 = -5$$

$$I2 = -0.294 \text{ A}$$

Substituting the value of I2 = -0.294 A in (i) we get

$$15 \text{ I}1 + 2.94 = 4 \text{ or } 15 \text{ I}1 = 4 - 2.94$$

15 I1 =1.06 A

or I1 =0.070 A

Find current through $I_{10\Omega}$

$$I_{10\Omega} = 0.07 - (-2.94) = 0.36 \text{ A}$$
 -----(1M)

2 .Define RTC and proof Where = tempt. coeff. at 0° C; = tempt. coeff. at t° C.

Solution:

The temperature-coefficient of a material may be defined as :*The increase in resistance per ohm original resistance per °C rise in temperature.* -----(1M)

value of α itself is not constant but depends on the initial temperature on which the increment in resistance is based. When the increment is based on the resistance measured at 0° C,

then α has the value of $\alpha 0$. At any other initial temperature $t^{\circ}C$, value of is αt and so on. Suppose a conductor of resistance R0 at $0^{\circ}C$ is heated to $t^{\circ}C$ Its resistance Rt after heating is given by

Where $\alpha 0$ is the temperature coefficient at 0°C.

The resistance given in terms of

From eq 2 we have,

----(1M)

Hence, -----(1M)

3. State Thevenin's theorem and explain how it is applied for network problem.

Solution:

Thevenin's Theorem stated as

The current flowing through a load resistance RL connected across any two terminals A and B of a linear, active bilateral network is given by Voc \parallel (Ri + RL) where Voc is the open-circuit

Suppose, it is required to find current flowing through load resistance RL, as shown in Fig. (a).

Steps ---(2 M)

- **1.** Remove *RL* from the circuit terminals *A* and *B* and redraw the circuit as shown in Fig. (*b*). The terminals have become open-circuited.
- **2.** Calculate the open-circuit voltage *Voc* which appears across terminals *A* and *B* when they are open *i.e.* when *RL* is removed.

As seen, Voc = drop across R2 = IR2 where I is the circuit current when A and B are open.

$$I = E / (R_1 + R_2 + r)$$

 $Voc = IR2 = E R_2/(R_1 + R_2 + r)$ (r is the internal resistance of battery)

It is also called 'Thevenin voltage' Vth.

3. Now, imagine the battery to be removed from the circuit, leaving its internal resistance r behind and redraw the circuit, as shown in Fig. (c). When viewed inwards from terminals A and B, the circuit consists of two parallel paths: one containing R2 and the other containing R1 + r). The equivalent resistance of the network, as viewed from these terminals is given as

$$R_{th} = R2 \parallel (R1 + r) = R2(R1 + r) / (R2 + (R1 + r))$$

This resistance is also called, Thevenin resistance Rth

4. RL is now connected back across terminals A and B from where it was temporarily removed earlier. Draw the Thevenin's equivalent circuit and find Current flowing through RL

----(1M)