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SOLUTION
Q. No.1 Attempt any one of the following (08)
a) Derive Cauchy’s formula for stress components on an arbitrary plane. Hence find Characteristic
Equation of Principal Stresses.
Solution:

If stress components acting on three mutually perpendicular planes passing through a point are known then
stress components acting on any arbitrary plane passing through that point can be obtained. Let, the three
mutually perpendicular planes be x, y, z planes and let the arbitrary plane be identified by its outward normal n̂
whose direction cosines are l, m, n. Consider a small tetrahedron at P with three of its faces normal to the
coordinate axis and the inclined face having its normal parallel to n̂ . Let h = perpendicular distance from P to
inclined face. Let, Rn is the resultant stress vectors on face ABC. This can be resolved into components nX , nY ,

nZ parallel to the three axis X , Y and Z . if, A = area of inclined face ABC.

Area APB  Projection of ABC on YZ plane  A.l

Area BPC  Projection of ABC on XZplane  A.m

Area APC  Projection of ABC on XYplane  A.n

 
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Let body force components in x, y, z directions be , .. ,x y zB B and B per unit volume. The volume of tetrahedron

is
1

3
Ah . Therefore considering equilibrium in x-direction,
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Cancelling, A and as h → 0: plane ABC → point P,
Therefore,

. . .n xx yx zxX l m n     ;

Similarly considering 0yF  and 0zF  ;



. .n xy yy yzY l m n     , and . . .n xz yz zzZ l m n    

These three equations are known as surface conditions or Cauchy’s conditions.
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The planes on which stresses are wholly normal are called principle stresses. For planes on which Rn is normal;
. , . , .n n nX l Y m Z n     where  is magnitude of normal resultant.

From Cauchy’s formula,
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This is set of simultaneous equations. Hence its determinant must be zero.
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This equation is known as characteristic equation and roots of this equation are called principle stresses.

b) The state of stress characterized by [ ]ij is given below. Resolve the given state into Hydrostatic state

and Pure Shear state. Determine the normal and shearing stress on octahedral plane.
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Solution:

State of Hydrostatic state of is given by, 1

1
( )

3h x y zI       =
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Therefore,
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and, Pure shear state is,  
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Stress Invariants are given by,
First Invariant, 1 (10 8 12) 30x y zI          and,

Second Invariant, 2
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Therefore the octahedral normal stress is 1

1 1
30 10
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The octahedral normal stress is
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Q. No. 2 Attempt any three of the following: (12)
a) Derive governing differential equation of equilibrium for 3-D state of stress in Cartesian coordinate
system.
Solution:

Consider, elementary volume X Y Z   , subjected to a state of stress and body forces as shown. Forces on
elementary volume acting in X-direction only are shown in figure. Let, body force vector

be ˆˆ ˆ. . .x y zB B i B j B k  


.

Thus, for static case, considering 0xF  ,
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Similarly, considering 0yF  ,

0xy yy zy
y

x z

B
y

    
    
  

And considering 0zF  ,
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b) What do you understand by Airy’s Stress Function? Explain how to obtain constant stress field
and strain field with linearly varying displacement field.
Solution:

The scalar function ( , )x y be such that,
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, where

( , )x y  ; is an arbitrary form called the Airy stress function. In absence of body forces,
0;  and 0  . Thus plane problem of elasticity gets reduced to single equation in terms of . The

Airy stress function is also independent of elastic constants in the absence of body forces. Thus, the
stress field flon plane stress and plane strain will be identical and independent of elastic constants.
However, a resulting strain and displacement calculated from these stress fields will be different as
Hooke’s law and stran displacement relations are different.

In Cartesian coordinate system, generally Airy stress function will take a form as,
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To write a stress function of particular order, Pascal’s triangle is to be used.
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With second degree polynomial, with 2, , 2m and n  ,
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Thus, in absence of body force or constant body force 0  ; second order polynomial gives constant
stress field and constant strain field. It gives a linearly varying displacement field.

c) Explain constitutive relation for linearly elastic, isotropic material in State of Plane Strain.
Solution:
Let condition of plane strain exists in X-Y plane. From constitutive law for Three Dimensional state of
stress,
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For plane strain condition, , 0xy xx yy zz yz zxand exist and            . Thus the above

constitutive law reduces to,
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d) For a point in a linearly elastic isotropic body, the deviatoric strain tensor is given by,
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The volumetric strain is 16 x 10-4 and Lame’s constants are 120 , 80GPa GPa   . Find state of
stress at the point.
Solution:
The relation between    d dand  is given by,
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Given that, 416 10xx yy zze         , therefore,
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The state of stress is given by,
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