Proposed Course Curriculum

Electronics & Telecommunication Engineering

From 3rd Semester - 8th Semester
Finalized in BoS meeting held on April 7-9, 2017
<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course Code</th>
<th>Course</th>
<th>Teaching Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>1.</td>
<td>EC 01</td>
<td>Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>EC 02</td>
<td>Principles of Communication Engineering</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>EC 03</td>
<td>Electronic Devices and Circuits</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>EC 04</td>
<td>Digital Electronics</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>EC 05</td>
<td>Electronic Measuring Instruments & Tools</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>EC 06</td>
<td>Network Analysis</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>EC 07</td>
<td>Physics of Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(Ele-I)</td>
<td>Engineering Chemistry-II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Open)</td>
<td>Advanced Computer Programming</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ECL 08</td>
<td>Electronic Devices and Circuits Laboratory</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>ECL 09</td>
<td>Principles of Communication Engg. Laboratory</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>ECL 10</td>
<td>Digital Electronics Laboratory</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Sr. No.</td>
<td>Course Code</td>
<td>Course</td>
<td>Teaching Scheme</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>1.</td>
<td>EC 11</td>
<td>Linear Integrated Circuits</td>
<td>L 3 T 0 P 0 C 3</td>
</tr>
<tr>
<td>2.</td>
<td>BH01</td>
<td>Basic Human Rights</td>
<td>L 2 T 0 P 0 C 2</td>
</tr>
<tr>
<td>3.</td>
<td>EC 12</td>
<td>Signals and Systems</td>
<td>L 3 T 1 P 0 C 4</td>
</tr>
<tr>
<td>4.</td>
<td>EC 13</td>
<td>Numerical Methods</td>
<td>L 3 T 1 P 0 C 4</td>
</tr>
<tr>
<td>5.</td>
<td>EC 14</td>
<td>Electrical Machines</td>
<td>L 3 T 0 P 0 C 3</td>
</tr>
<tr>
<td></td>
<td>(Ele-II)</td>
<td>Open Source Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Open)</td>
<td>Renewable Energy</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>EC 15</td>
<td>Industrial Instrumentation</td>
<td>L 3 T 0 P 0 C 3</td>
</tr>
<tr>
<td></td>
<td>(Ele-III)</td>
<td>Development Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linear Algebra</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nano Electronics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSS1</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>ECL 16</td>
<td>Analog Circuits Laboratory</td>
<td>L 0 T 0 P 2 C 1</td>
</tr>
<tr>
<td>8.</td>
<td>ECL 17</td>
<td>Numerical Methods Laboratory</td>
<td>L 0 T 0 P 2 C 1</td>
</tr>
<tr>
<td>9.</td>
<td>ECL 18</td>
<td>Signals & Systems Laboratory</td>
<td>L 0 T 0 P 2 C 1</td>
</tr>
<tr>
<td>10.</td>
<td>EC 19</td>
<td>Seminar & Presentation</td>
<td>L 0 T 0 P 4 C 2</td>
</tr>
<tr>
<td>11.</td>
<td>MP 20</td>
<td>Mini-project</td>
<td>L 0 T 0 P 2 C 1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>L 17 T 02 P 12 C 25</td>
</tr>
</tbody>
</table>
Department of Electronics & Telecommunication Engineering

B.Tech (Electronics & Telecommunication Engineering)

Semester V

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course Code</th>
<th>Course</th>
<th>Teaching Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>1.</td>
<td>EC 21</td>
<td>Probability and Random Processes</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>EC 22</td>
<td>Electromagnetic Fields</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>EC 23</td>
<td>Microprocessor and Microcontroller</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>EC 24</td>
<td>Digital Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EC 25 (Ele-IV)</td>
<td>Digital Voice and Picture Communication</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Economics</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>EC 26 (Ele-V)</td>
<td>Telecomm. Network Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEMS & NEMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Embedded System Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSS2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSF COURSE I</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>ECL 27</td>
<td>Microprocessor and Microcontroller Laboratory</td>
<td>0</td>
</tr>
<tr>
<td>8.</td>
<td>ECL 28</td>
<td>Digital Communication Laboratory</td>
<td>0</td>
</tr>
<tr>
<td>9.</td>
<td>ECL 29</td>
<td>Digital Signal Processing Laboratory</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>
Department of Electronics & Telecommunication Engineering
B.Tech (Electronics & Telecommunication Engineering)
Semester VI

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Course Code</th>
<th>Course</th>
<th>Teaching Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EC 30</td>
<td>Wireless Communication</td>
<td>3 1 0 4</td>
</tr>
<tr>
<td>2</td>
<td>EC 31</td>
<td>Control System</td>
<td>3 1 0 4</td>
</tr>
<tr>
<td>3</td>
<td>EC 32</td>
<td>Digital Communication</td>
<td>3 0 0 3</td>
</tr>
<tr>
<td>4</td>
<td>*EC33</td>
<td>Employability & Skill Development</td>
<td>2 0 0 2</td>
</tr>
<tr>
<td>5</td>
<td>EC 34 (Ele-VI)</td>
<td>Image Processing</td>
<td>3 1 0 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power Electronics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Audio & Video Processing</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>EC35 (Ele-VII) (Open)</td>
<td>Data Structure</td>
<td>3 0 0 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acoustic Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rural Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Digital System Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSF COURSE II</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ECL 36</td>
<td>Image Processing Laboratory</td>
<td>0 0 2 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power Electronics Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Audio & Video Processing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laboratory</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>EC CP 37</td>
<td>Community Project</td>
<td>0 0 4 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>17 3 6 23</td>
</tr>
</tbody>
</table>

EC33- Only Term Work, no final examination.
Department of Electronics & Telecommunication Engineering

B.Tech (Electronics & Telecommunication Engineering)

Semester VII

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course Code</th>
<th>Course</th>
<th>Teaching Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>1.</td>
<td>EC 38</td>
<td>Antenna and Wave Propagation</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>EC 39</td>
<td>Optical Fiber Communication</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>EC 40</td>
<td>RF & Microwave Communication</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>EC 41</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(Ele-VIII)</td>
<td>Computer Network</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cloud Computing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electronics Product Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internet of Things</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>EC 42</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(Ele-IX)</td>
<td>Data Compression and Encryption/Cryptography</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VLSI Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLC and Automation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speech Processing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSF COURSE III</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>ECL 43</td>
<td>Antenna and Wave Propagation Laboratory</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>ECL 44</td>
<td>Computer Network Laboratory</td>
<td>0</td>
</tr>
<tr>
<td>8.</td>
<td>ECL 45</td>
<td>Optical Fiber Communication Lab</td>
<td>0</td>
</tr>
<tr>
<td>9.</td>
<td>ECL 46</td>
<td>VLSI and Embedded Lab</td>
<td>0</td>
</tr>
<tr>
<td>10.</td>
<td>EC 47</td>
<td>Industrial Training Seminar Laboratory</td>
<td>0</td>
</tr>
<tr>
<td>11.</td>
<td>ECP1 48</td>
<td>Project</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Sr. No.</td>
<td>Course Code</td>
<td>Course</td>
<td>Teaching Scheme</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>1</td>
<td>EC 49 (Ele-X)</td>
<td>Wireless Sensor Networks</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radar & Satellite Communication</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neural Network and Fuzzy logic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advance Cellular Network</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>EC 50 (Ele-XI)</td>
<td>Analog and Mixed Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advance 3G/4G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telecom Regulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Estimation and Detection Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soft Computing</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>EC 51 (Ele-XII)</td>
<td>Multirate Digital Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RF Circuit Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biomedical Signal Processing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Robotics and automation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software Defined Radio</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ECP2 52</td>
<td>Project</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>
Prerequisites: Differential and Integral Calculus, Taylor series and Infinite series, Differential equations of first order and first degree, Fourier series, Vector algebra, Algebra of complex numbers.

Course Objectives:
After completion of the course, students will have adequate background, conceptual clarity and knowledge of appropriate solution techniques related to:

- Linear differential equations of higher order using analytical methods and numerical methods applicable to Control systems and Network analysis.
- Transforms such as Fourier transform Z-transform and applications to Communication systems and Signal processing.
- Vector differentiation and integration required in Electro-Magnetics and Wave theory.
- Complex functions, conformal mappings, contour integration applicable to Electrostatics, Digital filters, Signal and Image processing.

Course Outcomes:
On completion of the course, student will be able to:

1. Solve higher order linear differential equation using appropriate techniques for modeling and analyzing electrical circuits.
2. Solve problems related to Fourier transform, Z-transform and applications to Communication systems and Signal processing.
4. Perform vector differentiation and integration, analyze the vector fields and apply to Electro-Magnetic fields.
5. Analyze conformal mappings, transformations and perform contour integration of complex functions in the study of electrostatics and signal processing.
UNIT - 1

Laplace Transform
Definition - condition for existence; Transforms of elementary functions; Properties of Laplace transforms - Linearity property, first shifting property, second shifting property, transforms of functions multiplied by t^n, scale change property, transforms of functions divided by t, transforms of integral of functions, transforms of derivatives; Evaluation of integrals by using Laplace Transform. Transforms of some special functions - periodic function, error function, unit step function.

UNIT - 2

Inverse Laplace Transform
Introductory remarks; Inverse transforms of some elementary functions; General methods of finding inverse transforms; Partial fraction method and Convolution Theorem for finding inverse Laplace transforms; Applications to find the solutions of linear differential equations and simultaneous linear differential equations with constant coefficients.

UNIT - 3

Fourier Transform
Definition - integral transforms; Fourier integral theorem (without proof); Fourier sine and cosine integrals; Complex form of Fourier integrals. Fourier sine and cosine transforms; Properties of Fourier transforms: Convolution theorem for Fourier Transforms, Application to boundary value problems.

UNIT - 4

Series Solutions of Differential Equations and Special Functions
Validity of series solution; Series solutions about ordinary and singular point; Frobenius method; Series solution of Bessel equation; Recurrence relations for Bessel function; Generating function for Bessel function; Orthogonality of Bessel function.

UNIT - 5

Partial Differential Equations and Their Applications
Formation of Partial differential equations; Solutions of Partial differential equations - direct integration, linear equations of first order (Lagrange’s linear equations), homogeneous linear equations with constant coefficients; Method of separation of variables - application to find solutions of wave equation, one dimensional heat equation and Laplace equation.
UNIT - 6

Calculus of Complex Functions
Limit and continuity of $f(z)$; Derivative of $f(z)$ - Cauchy-Riemann equations; Analytic functions; Harmonic functions – Orthogonal system; Conformal transformations: complex integration - Cauchy's theorem, integral formula; Residue theorem.

<table>
<thead>
<tr>
<th>TEXT/REFERENCE BOOKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. A course in Engineering Mathematics (Vol II & III) by Dr. B. B. Singh, Synergy Knowledge ware, Mumbai.</td>
</tr>
</tbody>
</table>
Course Objectives:
The students are expected to demonstrate the ability to:

- Describe and analyze the mathematical techniques of generation, transmission and reception of amplitude modulation (AM), frequency modulation (FM) and phase modulation (PM) signals.
- Evaluate the performance levels (Signal-to - Noise Ratio) of AM, FM and PM systems in the presence of additive white noise.
- Convert analog signals to digital format and describe Pulse and digital Modulation techniques.

Course Outcomes:
On completion of the course, student will be able to:

1. Understand and identify the fundamental concepts and various components of analog communication systems.
2. Explain signal to noise ratio, noise figure and noise temperature for single and cascaded stages in a communication system.
3. Describe analog pulse modulation techniques and digital modulation technique.
4. Develop the ability to compare and contrast the strengths and weaknesses of various communication systems.

UNIT - 1

Introduction to Communication Systems
Introduction to transmitter, the dB in communications, noise, noise designation & calculation, noise measurement, concept of modulation, Bandwidth requirement, Frequency allocation, Noise in modulation systems, Introduction to random processes and random signals as applicable to noise.

UNIT - 2

Linear Modulation

UNIT - 3

Angle Modulation
Introduction, Bandwidth of FM, Tone Modulation, Phase Modulation, Generation of FM, Demodulation of FM, Band pass Linear (BPL), Broadcast FM.

UNIT - 4

Digital Transmission of Analog Signals: PCM, DPCM AND DM
Introduction, The PCM system, Sampling, Quantization, Encoding, Electrical waveform representation of binary sequences, Bandwidth requirements of PCM, Differential Pulse Code Modulation (DPCM) and Delta Modulation.

UNIT - 5

Noise Performance of Various Modulation Schemes
Introduction, Receiver Model and Figure of Merit: Linear Modulation, Coherent Demodulation, Envelope Detection, Receiver Model: Angle Modulation, Calculation FOM, Pre-Emphasis and de-Emphasis in FM, Noise performance of a PCM system.

UNIT - 6

Communication Techniques
Introduction, Frequency conversion, Special techniques, receiver noise & sensitivity, dynamic range, Inter modulation distortion testing, Frequency synthesis, directs digital synthesis, FM communications transceivers. Review of telegraphy, Telephony and telemetry. Microphones and Loudspeakers: Concept, classifications & working and PA system.

TEXT/REFERENCE BOOKS

Prerequisites: Basic knowledge of Semiconductor Physics

Course Objectives:
- To introduce semiconductor devices FET and MOSFET, their characteristics, operations, circuits and applications.
- To introduce concepts of both positive and negative feedback in electronic circuits.
- To analyze and interpret FET and MOSFET circuits for small signal at low and high frequencies.
- To simulate electronics circuits using computer simulation software and verify desired results.
- To study the different types of voltage regulators.

Course Outcomes:
On completion of the course, student will be able to:
1. Comply and verify parameters after exciting devices by any stated method.
2. Implement circuit and test the performance.
3. Analyze small signal model of FET and MOSFET.
4. Explain behavior of FET at low frequency.
5. Design an adjustable voltage regulator circuits.

UNIT - 1

JFET
Introduction to JFET, Types, Construction, Operation, Static Characteristics, Pinch off voltage, FET Volt-Ampere characteristics, FET Configurations (CS/CD/CG) and their Comparison. Biasing of FET (Self). FET as an amplifier and its analysis (CS) and its frequency response. Small signal model, FET as High Impedance circuits.

UNIT - 2

MOSFET & its DC Analysis
MOSFET AC Circuit Analysis
The MOSFET CS small signal amplifier, Small signal parameters, small signal equivalent circuit, Modeling, Body effect, Analysis of CS amplifier, Introduction to Bi CMOS technology, The MOSFET internal capacitances and high frequency model, Introduction to MOSFET as basic element in VLSI, V-I characteristic equation in terms of W/L ratio, MOSFET scaling and small geometry effects, MOSFET capacitances.

MOSFET Circuits
MOSFET as switch, diode/active resistor, Current sink and source, current mirror, Voltage references, Basic principle of band gap reference, CMOS Inverter as amplifier: Active load, Current source and Push pull configurations.

Feedback amplifiers and Oscillators

Voltage Regulator
Block diagram of an adjustable three terminal positive and negative regulators (317,337) Typical connection diagram, current boosting. Low drop out voltage regulators. Introduction to Switch Mode Power supply (SMPS), Block diagram of SMPS, Types of SMPS. Comparison of Linear Power supply and SMPS.

TEXT/REFERENCE BOOKS
5. Anil K. Maini and Varsha Agarwal “Electronic Devices and Circuits”, Wiley India
Course Objectives:

- To acquaint the students with the fundamental principles of two-valued logic and various devices used to implement logical operations on variables.
- To lay the foundation for further studies in areas such as communication, VLSI, computer, microprocessor.

Course Outcomes:

On completion of the course, student will be able to

1. Use the basic logic gates and various reduction techniques of digital logic circuit in detail.
2. Design combinational and sequential circuits.
3. Design and implement hardware circuit to test performance and application.
4. Understand the architecture and use of microcontrollers for basic operations and Simulate using simulation software.

UNIT - 1

Combinational Logic Design

Standard representations for logic functions, k map representation of logic functions (SOP and POS forms), minimization of logical functions for min-terms and max-terms (upto 4 variables), don’t care conditions, Design Examples: Arithmetic Circuits, BCD - to – 7 segment decoder, Code converters. Adders and their use as subtractor, look ahead carry, ALU, Digital Comparator, Parity generators/checkers, Multiplexers and their use in combinational logic designs, multiplexer trees, De-multiplexers and their use in combinational logic designs, Decoders, demultiplexer trees. Introduction to Quine-McCluskey method.

UNIT - 2

Sequential Logic Design

1 Bit Memory Cell, Clocked SR, JK, MS J-K flip flop, D and T flip-flops. Use of preset and clear terminals, Excitation Table for flip flops. Conversion of flip flops. Application of Flip flops: Registers, Shift registers, Counters (ring counters, twisted ring counters), Sequence Generators, ripple counters, up/down counters, synchronous counters, lock out, Clock Skew, Clock jitter. Effect on synchronous designs.
State Machines
Basic design steps- State diagram, State table, State reduction, State assignment, Mealy and Moore machines representation, Implementation, finite state machine implementation, Sequence detector. Introduction to Algorithmic state machines- construction of ASM chart and realization for sequential circuits.

Digital Logic Families
Classification of logic families, Characteristics of digital ICs-Speed of operation, power dissipation, figure of merit, fan in, fan out, current and voltage parameters, noise immunity, operating temperatures and power supply requirements. TTL logic, Operation of TTL NAND gate, active pull up, wired AND, open collector output, unconnected inputs. Tri-State logic. CMOS logic – CMOS inverter, NAND, NOR gates, unconnected inputs, wired logic, open drain output. Interfacing CMOS and TTL, Comparison table of Characteristics of TTL, CMOS, ECL, RTL, I2L and DCTL.

Programmable Logic Devices and Semiconductor Memories
Programmable logic devices: Detail architecture, Study of PROM, PAL, PLA, Designing combinational circuits using PLDs. General Architecture of FPGA and CPLD Semiconductor memories: memory organization and operation, expanding memory size, Classification and characteristics of memories, RAM, ROM, EPROM, EEPROM, NVRAM, SRAM, DRAM.

Introduction to Microcontroller 8051
Microprocessors and Microcontrollers comparison, 8051 architecture, Pin description, addressing modes, instruction set of 8051, concepts of Counters and Timers with the help of status registers, Port Structure and Interrupts. Simple programming examples – for addition, subtraction, multiplication and delay.

TEXT/REFERENCE BOOKS
Course Objective:
• To make student competent for handling measuring instruments and to able to select right instrument for the purpose of measurement under different conditions.

Course Outcomes:
On completion of the course, student will be able to:
1. Understand fundamental of various electrical measurements.
2. Understand and describe specifications, features and capabilities of electronic instruments.
3. Finalize the specifications of instrument and select an appropriate instrument for given measurement.
4. Carry out required measurement using various instruments under different setups.
5. Able to compare measuring instruments for performance parameters.
6. Select appropriate instrument for the measurement of electrical parameter professionally.

Contents
It is expected that operating principle, block diagram and other details shall be taught in theory sessions. Teachers will explore these instruments in detail in respective laboratory sessions. Specification sheet / functions of the instrument should be listed and attached in file/journal.

Theory lectures shall cover following topics along-with discussion of practicals
2. Performance parameters for measuring instruments.
3. Information about OIML standards.
4. Statistical analysis (Definitions and Introductions only), sources of errors and remedies
5. Calibration and Maintenance of Instruments.

TEXT/REFERENCE BOOKS
1. Instrument manuals published by respective Manufactures.
Course Objectives:

- To learn about the basic laws of electric circuits as well as the key fundamentals of the communication channels, namely transmission lines.
- To understand the need of simplification techniques of complicated circuits.
- To learn about the comprehensive insight into the principle techniques available for characterizing circuits, networks and their implementation in practice.
- To learn about the use of mathematics, need of different transforms and usefulness of differential equations for analysis of networks.
- To train the students for handling analog filter design through theory of NA along with practical, this is basic requirement of signal processing field.

Course Outcomes:

1. Learner will be able to apply knowledge of mathematics to solve numerical based on network simplification and it will be used to analyze the same.
2. Learner will be able to design analog filters and attenuators theoretically and practically.
3. Learner will be able to design analog filters based on which they can further apply knowledge for design of active filters as well as digital filters and even extend this to advance adaptive filters.
4. Learner will get an ability to identify issues related to transmission of signals, analyze different RLC networks.
5. Learner will be able to find technology recognition for the benefit of the society.

UNIT - 1

Basic Circuit Analysis and Simplification Techniques

UNIT - 2

Frequency Selective Networks
Significance of Quality factor. Series Resonance: Impedance, Phase angle variations with frequency, Voltage and current variation with frequency, Bandwidth, Selectivity. Effect of Rg on BW & Selectivity. Magnification factor. Parallel resonance: Resonant frequency and admittance variation with frequency, Bandwidth and selectivity. General case: Resistance present in both branches. Comparison and applications of series and parallel resonant circuits. Twin T and Wein Bridge Networks as Notch Filters.
Filters and Attenuators

Classifications: Symmetrical and Asymmetrical networks. Properties of two port Network:(i) Symmetrical Networks (T and Π only). Z₀ and γ in terms of circuit components, open and short circuit parameters (ii) Asymmetrical Networks: Image Impedance and Iterative Impedance (L-Section only). Filters: Filter fundamentals, Constant K-LPF, HPF, BPF and BSF, m derived LPF and HPF, Terminating half sections, Concept of composite filters Attenuators: Introduction to Neper and Decibel, Relation between Neper and Decibel, Symmetrical T and II type attenuators.

Laplace Transform and Its Applications

Introduction to complex frequency, Definition of Laplace Transform, Basic Properties of Laplace Transform, Inverse Laplace Transform Techniques, Laplace Transform of Basic R, L and C components, Transient response of simple electrical circuits such as RL & RC.

Two Port Network Parameters and Functions

Terminal characteristics of network: Z, Y, h, ABCD Parameters; Reciprocity and Symmetry conditions, Applications of the parameters. Network functions for one port and two port networks, Pole-zeros of network functions and network stability.

Transmission Line Theory

Types of Transmission lines, Transmission Line Equation, Equivalent circuits, Primary and Secondary line constants, Terminations of transmission lines, VSWR and Reflection Coefficient.

TEXT/REFERENCE BOOKS

7. Royal Signal Handbook on Line Communication
Course Objective:

- To understand and apply the Physics principles behind the development of Engineering Materials

Course Outcome:

The students will be able to understand fundamentals of Electrodynamics, Crystal structure, Semiconductors, Dielectrics, Nano materials, Magnetic and superconducting materials. It forms the base of many modern advance devices and technology.

UNIT - 1

Crystallography

Crystal directions and planes, Diatomic Crystal (CsCl, NaCl, Diamond, BaTiO3) Crystal imperfection, Point defects, Line defects, Surface and Volume defects, Structure properties relationship, structure determination by X-ray diffraction.

UNIT - 2

Magnetic Materials

Origin of magnetization using atomic theory, classification of magnetic materials and properties, Langevin’s theory of Dia, Para and ferromagnetism, Soft and Hard magnetic materials and their uses, Domain theory of ferromagnetism, Hysteresis loss, Antiferromagnetic and Ferrimagnetic materials, Ferrites and Garnets, magnetic bubbles, magnetic recording.

UNIT - 3

Conducting and Superconducting Materials

Band theory of solids, Classical free electron theory of metals, Quantum free electron theory, Density of energy states and carrier concentration, Fermi energy, Temperature and Fermi energy distribution, Superconductivity, Factor affecting Superconductivity, Meissner effect, Type-I and Type-II superconductors, BCS theory, Josephson effect, High temperature superconductors, Application of superconductors (Cryotron, magnetic levitation)

UNIT - 4

Semiconducting Materials

Band structure of semiconductor, Charge carrier concentration, Fermi level and temperature, Electrical conductivity, Hall effect in semiconductors, P-N junction diode, Preparation of single crystals, LED, Photovoltaic Cell.
UNIT - 5

Dielectric Materials
Dielectric constant and polarizability, types of polarization, temperature and frequency dependences of Dielectric parameter, internal fields in solids, Clausius-Mosotti equation, dielectric loss, dielectric breakdown, ferroelectric, pyroelectric and piezoelectric materials, applications of dielectric materials.

UNIT - 6

Nano Materials
Nanomaterials: Introduction and properties, synthesis of nanomaterials, Carbon Nano Tubes, Characterization techniques of nanomaterials- SEM, TEM, EDAX, FMR, Applications of nanomaterials.

TEXT/REFERENCE BOOKS

1. Introduction to Solid state Physics – C. Kittle
4. Material Science and Engineering – V. Raghavan
Course Objective:
- To understand and apply the Chemistry principles

Course Outcome:
The students will be able to understand fundamentals of corrosion, properties of metals, applications of polymer, spectroscopy etc.

UNIT - 1

Corrosion and its Control
Introduction, Fundamental reason, Electrochemical Corrosion, Direct Chemical Corrosion, Factors affecting the rate of corrosion, types of corrosion-Galvanic, Pitting Corrosion, Microbiological corrosion, Stress corrosion, methods to minimise the corrosion- Proper design, Cathodic and Anodic protection.

UNIT - 2

Metals and Alloys
Metals: Introduction, Properties of metals and alloys. Occurrence, extraction, properties and uses of Ni, Cr and Ti.
Alloys: Introduction, Need for alloying Steel, Application of Alloy Steel.

UNIT - 3

Polymers and its Characterization

UNIT - 4

Basic Techniques in Chemistry
Preparing substances for analysis, dissolving the samples, Precipitation, Filtration, Washing Precipitate, Drying and Igniting precipitate. Solvent Extraction: Aqueous and Organic phase liquid – liquid extraction.
UNIT - 5

Spectroscopy

UNIT - 6

Instrumental Methods of Analysis

Introduction to Chromatography, Types of Chromatography (Adsorption and partition chromatography), Paper and Thin Layer Chromatography, Gas Chromatography – introduction, theory, instrumentation. Brief discussion of Thermo gravimetric analysis (TGA)

TEXT/REFERENCE BOOKS

10. Instrumental Methods of analysis by Willard, Dean, Merrit, McGraw - Hill.
Course Objectives:

- Make the students familiar with basic concepts and techniques of object oriented programming in C++ & Java.
- Develop an ability to write programs in C++ and Java for problem solving.

Course Outcomes:

Upon successful completion of this course, students should be able to:

1. Describe the principles of object oriented programming.
2. Apply the concepts of data encapsulation, inheritance in C++.
3. Understand basic program constructs in Java.
4. Apply the concepts of classes, methods and inheritance to write programs Java.
5. Use arrays, vectors and strings concepts and interfaces to write programs in Java.
6. Describe and use the concepts in Java to develop user friendly program.

UNIT - 1

Introduction to Object Oriented Programming

UNIT - 2

Concepts of Object Oriented Programming with C++

Classes & Objects: Specifying a class, Defining member functions, A C++ program with class, Making an outside function inline, Nesting of member function, Private member function, Arrays within class, Member allocation for objects, Arrays of objects, Objects as function arguments. Constructors & Destructors: Constructors, Parameterized constructors, Multiple constructors in a class, Constructors with default arguments. Operator overloading concept: Use of operator overloading, defining operator overloading, Binary operator overloading. Introduction to Inheritance: Concept and types of Inheritance, Defining derived classes, Single inheritance, Making a private member inheritable, multilevel inheritance.
UNIT - 3

Java Fundamentals
Evolution of Java, Comparison of Java with other programming languages, Java features, Java Environment, Simple Java Program, Java Tokens, Java Statements, Constants, variables, data types. Declaration of variables, Giving values to variables, Scope of variables, arrays, Symbolic constants, Typecasting, Getting values of variables, Standard default values, Operators, Expressions, Type conversion in expressions, Operator precedence and associatively, Mathematical functions, Control statements- Decision making & branching, Decision making & looping.

UNIT - 4

Classes, Methods & Objects in Java
Class Fundamentals, Declaring Objects, Assigning Object reference variables, Methods, Constructors, The This keyword, Garbage collection, finalize method, Overloading methods, using objects as parameters, Argument passing, returning objects, Recursion, access control, static, final, arrays, strings class, Command line arguments.

UNIT - 5

Inheritance, Packages and Interfaces

UNIT - 6

Multithreading, Exception handling & Applets
Introduction to multithreading: Introduction, Creating thread and extending thread class. Concept of Exception handling: Introduction, Types of errors, Exception handling syntax, Multiple catch statements. I/O basics, Reading console inputs, Writing Console output.
Applets: Concepts of Applets, differences between applets and applications, life cycle of an applet, types of applets, creating a simple applet.

TEXT/REFERENCE BOOKS
 T. Budd, Understanding OOP with Java, Pears
Course Objectives:
- To understand characteristics of IC and Op-Amp and identify the internal structure.
- To introduce various manufacturing techniques.
- To study various op-amp parameters and their significance for Op-Amp.
- To learn frequency response, transient response and frequency compensation techniques for Op-Amp.
- To analyze and identify linear and nonlinear applications of Op-Amp.
- To understand functionalities of PLL and its use in various applications in communication and control systems.

Course Outcomes:
On completion of the course, student will be able to:
1. Understand the characteristics of IC and Op-Amp and identify the internal structure.
2. Understand and identify various manufacturing techniques.
3. Derive and determine various performances based parameters and their significance for Op-Amp.
4. Comply and verify parameters after exciting IC by any stated method.
5. Analyze and identify the closed loop stability considerations and I/O limitations.
6. Analyze and identify linear and nonlinear applications of Op-Amp.
7. Understand and verify results (levels of V & I) with hardware implementation.
8. Implement hardwired circuit to test performance and application for what it is being designed.
9. Understand and apply the functionalities of PLL to Frequency synthesizer, multiplier, FM, and AM demodulators.

UNIT - 1

OP-AMP Basics
Block diagram of OP-AMP, Differential Amplifier configurations, Differential amplifier analysis for dual-input balanced-output configurations using ‘r’ parameters, Need and types of level shifter, current mirror circuits. Voltage series and voltage shunt feedback amplifier and its effect on Ri, Ro, bandwidth and voltage gain.

UNIT - 2

Linear Applications of OP-AMP
Inverting and Non-inverting amplifier, voltage follower. Summing, averaging scaling amplifier, difference amplifier, Ideal integrator, practical integrator with frequency response, Ideal differentiator, practical differentiator with frequency response. Instrumentation amplifiers.

UNIT - 3

Non-linear Applications of OP-AMP
Comparator, characteristics of comparator, applications of comparator, Schmitt trigger (symmetrical/asymmetrical), clippers and clamps, voltage limiters, Square wave generator, triangular wave generator, Need of precision rectifier, Half wave, Full wave precision rectifiers, peak detectors, sample and hold circuits.

UNIT - 4

Converters using OP-AMP
V-F, I-V and V-I converter, DAC: types of DAC, characteristics, specifications, advantages and disadvantages of each type of DAC, ADC: types of ADC, characteristics, specifications, advantages and disadvantages of each type of ADC.

UNIT - 5

Phase Locked Loop & Oscillators
Block diagram of PLL and its function, PLL types, characteristics/parameters of PLL, and different applications of PLL. Oscillators principle, types and frequency stability, design of phase shift, Wein bridge, Quadrature, voltage controlled oscillators.

UNIT - 6

Active filters
Design and frequency scaling of First order and second order Active LP, HP, BP and wide and narrow band BR Butterworth filters and notch filter. All pass filters.

TEXT/REFERENCE BOOKS

| BH01 | Basic Human Rights | 2 Credits |

Course Objectives:
- To work for ensuring that basic human rights are respected everywhere.
- To cooperate to avoid compromising on human rights for economic or political expediency.
- To recognize democratic institutions as a fundamental human right.
- To work towards the sovereignty and self determination of entities with historical, cultural and ecological identity.
- To actively engage with the Government of India and other countries to promote human rights education.
- To bring diplomatic and commercial pressures on regimes that violates human rights, to ensure that they respect the basic rights of their citizens.
- To keep the interests of disempowered communities foremost in all dealings with countries in which human rights violations occur.
- To develop a more distinctive and effective role for the International Court of Justice in the field of human rights.
- To promote a culture for educating the citizenry that cultivation and promotion of human rights culture is the sine qua non for the smooth functioning of the organs of a democratic State and for the kind of development that results into overall development of the society.
- To train the young men and women for facing the challenges of the pluralistic society and the rising conflicts and tensions in the name of particularistic loyalties to caste, religion, region and culture.
- To study the effects of draconian laws and unlawful use of State's machinery and force by the enforcement agencies.

Course Outcomes:
1. Simply put, human rights education is all learning that develops the knowledge, skills, and values of human rights.
2. The strengthening of respect for human rights and fundamental freedoms.
3. The enabling of all persons to participate effectively in a free society.
4. Learning about human rights principles, such as the universality, indivisibility, and interdependence of human rights.
5. Learning about regional, national, state, and local law that reinforces international human rights law.
6. Learning and knowing about and being able to use global, regional, national, and local human rights instruments and mechanisms for the protection of human rights.
UNIT - 1

The Basic Concepts
Individual, group, civil society, state, equality, justice, Human Values: - Humanity, virtues, compassion.

UNIT - 2

Human rights and Human Duties
Origin, civil and political rights, Contribution of American bill of rights, French revolution, Declaration of independence, Rights of citizen, Rights of working and exploited people, Fundamental rights and economic program, India’s charter of freedom.

UNIT - 3

Society, religion, culture, and their inter-relationship
Impact of social structure on human behavior, Roll of socialization in human values, Science and Technology, modernization, globalization, and dehumanization.

UNIT - 4

Social Structure and Social Problems
Social and communal conflicts and social harmony, rural poverty, unemployment, bonded labour, Migrant workers and human rights violations, human rights of mentally and physically challenged.

UNIT - 5

State, Individual liberty, Freedom and Democracy
The changing of state with special reference to developing countries, Concept of development under development and social action, need for collective action in developing societies and methods of social action, NGOs and human rights in India: - Land, Water, Forest issues.

UNIT - 6

Human Rights in Indian Constitution and Law
The constitution of India:
(i) Preamble
(ii) Fundamental rights.
(iii) Directive principles of state policy.
(iv) Fundamental duties.
(v) Some other provisions.

TEXT/REFERENCE BOOKS

2. Nirmal, C.J., Human Rights in India: Historical, Social and Political Perspectives (Law in India), Oxford India.
Course Objectives:
- To understand the mathematical description of continuous and discrete time signals and systems.
- To classify signals into different categories.
- To analyze Linear Time Invariant (LTI) systems in time and transform domains.
- To build basics for understanding of courses such as signal processing, control system and communication.
- To develop basis of probability and random variables.

Course Outcomes:
On completion of the course, student will be able to
1. Understand mathematical description and representation of continuous and discrete time signals and systems.
2. Develop input output relationship for linear shift invariant system and understand the convolution operator for continuous and discrete time system.
3. Understand and resolve the signals in frequency domain using Fourier series and Fourier transforms.
4. Understand the limitations of Fourier transform and need for Laplace transform and develop the ability to analyze the system in s-domain.
5. Understand the basic concept of probability, random variables & random signals and develop the ability to find correlation, CDF, PDF and probability of a given event.

Introduction to Signals and Systems
Introduction and Classification of signals: Definition of signal and systems, communication and control systems as examples. Sampling of analog signals, sampling theorem, Continuous time and discrete time signal, Classification of signals as even, odd, periodic and non-periodic, deterministic and non-deterministic, energy and power.
Elementary signals used for testing: reasons for using standard test signals, exponential, sine, impulse, step and its properties, ramp, rectangular, triangular, signum, sinc.
Operations on signals: Amplitude scaling, addition, multiplication, differentiation, integration (Accumulator for DT), time scaling, time shifting and time folding.
Systems: Definition, Classification: linear and non-linear, time variant and invariant, causal and non-causal, static and dynamic, stable and unstable, invertible.
Time domain representation of LTI System
System modeling: Input-output relation, definition of impulse response, convolution sum, convolution integral, computation of convolution integral using graphical method for unit step to unit step, unit step to exponential, exponential to exponential, unit step to rectangular and rectangular to rectangular only. Computation of convolution sum. Properties of convolution. System interconnection, system properties in terms of impulse response, step response in terms of impulse response.

Fourier Series
Fourier series (FS) representation of periodic Continuous Time (CT) signals, Dirichlet condition for existence of Fourier series, orthogonality, basis functions, Amplitude and phase response, FS representation of CT signals using trigonometric and exponential Fourier series. Applications of Fourier series, properties of Fourier series and their physical significance, Gibbs phenomenon, Discrete Time Fourier Series, properties, convergence of DTFS.

Fourier transform
Fourier Transform (FT) representation of aperiodic CT signals, Dirichlet condition for existence of Fourier transform, evaluation of magnitude and phase response, FT of standard CT signals, FT of standard periodic CT signals, Properties and their significance, Interplay between time and frequency domain using sinc and rectangular signals, Fourier Transform for periodic signals, introduction to Discrete Time Fourier Transform.

Laplace transform and its applications
Definition of Laplace Transform (LT), Limitations of Fourier transform and need of Laplace transform, ROC, Laplace transform of standard periodic and aperiodic functions, properties of Laplace transform and their significance, Laplace transform evaluation using properties, Inverse Laplace transform based on partial fraction expansion, stability considerations in S domain, Application of Laplace transforms to the LTI system analysis.

Probability and Random Signals
Probability: Experiment, sample space, event, probability, conditional probability and statistical independence, Bayes theorem, Uniform and Gaussian probability models. Random variables:
Continuous and Discrete random variables, cumulative distributive function, Probability density function, properties of CDF and PDF. Statistical averages, mean, moments and expectations, standard deviation and variance.

Introduction to Correlation: Autocorrelation, Cross correlation, and their properties.

TEXT/REFERENCE BOOKS

8. NPTEL video lectures on Signals and Systems.
Course Objectives:
- To prepare students for successful career in industries, for Post Graduate programmes and to work in research institutes.
- To understand different numerical techniques used for solving algebraic and transcendental equations.
- To understand numerical methods to solve a system of linear equations.
- To understand numerical integration and differentiation techniques.
- To understand various difference operators and interpolation techniques.
- To understand object-oriented programming fundamentals and features.
- To mold students professionally by course contents and sufficient problem solving and programming exercises and to acquaint them with different types of numerical techniques and programming concepts.

Course Outcomes:
1. Learner will be able to solve algebraic and transcendental equations by using numerical techniques and will be able to compare different numerical techniques used for this purpose and also will be able to choose a proper one as per the requirement of the problem.
2. Learner will be able to solve a system of linear equations with any number of variables using different direct and iterative numerical techniques.
3. Students will understand the concept of interpolation, finite difference operators and their relations, and can apply different interpolation techniques on equi-spaced or non equi-spaced data values.
4. With the basic knowledge of the NMCP course, students can prepare themselves to write computer programs for the numerical computational techniques.
5. Students will understand application of the NMCP course in many engineering core subjects like signal processing, digital communication, numerical techniques in electromagnetics etc.
6. Students will understand procedure-oriented and object oriented programming concepts.
7. He/she will be capable of writing C and C++ programs efficiently.

Introduction to Computational Methods and Errors
Computational Methods: General principles of computational techniques, Introduction, common ideas and concepts of computational methods, various computational techniques. Errors: Types and sources of errors, Concept in error estimation, Error propagation, Error due to floating point, Representation of errors, Elementary uses of series in calculation of errors.
UNIT - 2

Solution of Transcendental / Polynomial Equations and System of Linear Equation

Solution of Transcendental / Polynomial Equations: Finding root of polynomial equations deploying computational methods such as Bisection, Regula-falsi, Newton-Raphson, Secant, Successive approximation. System of linear equation: Solving linear equations deploying computational methods such as Gauss elimination, Gauss Jordan, Partial pivoting, Matrix triangularisation (LU decomposition), Cholesky, Gauss Seidel and Jacobi methods.

UNIT - 3

Interpolation and Polynomial Approximation

Least square approximation, Orthogonal polynomials Chebyshev polynomials, Finite difference operator and their relations, Forward, backward, central and divided difference, Newton's forward divided difference, Backward difference interpolation, Sterling interpolation, Lagrange’s interpolation polynomials, Spline interpolation, Least square approximation.

UNIT - 4

Numerical Integration and Differentiation

UNIT - 5

Object Oriented Programming

Software Evaluation, Object oriented programming paradigm, Basic concepts of object oriented programming, Benefits of OOP, Object oriented languages, Applications of OOP Beginning with C++: Structure of C++ program, Creating the source file, Compiling & linking, Basic data types, User defined data types, Symbolic constants, Declaration of variables, Dynamic initialization of variables, Reference variables, Operators in C++, Scope resolution operator, Type cast operator. Functions in C++: Function prototyping, Inline functions, Function overloading, Friend and virtual functions. Classes and Objects: Specifying a class, Defining member functions, C++ program with class, Arrays within a class, Memory allocation for objects, Constructors, Multiple constructor in class, Dynamic initialization of objects, Dynamic constructor, Destructors.
UNIT - 6

Operator Overloading and Type Conversions
Defining operator overloading, Overloading unary operators, Overloading binary operators, Manipulation of strings operators, Rules for overloading operators. Inheritance: Extending Classes: Defining derived classes, Single inheritance, multilevel inheritance, multiple inheritance, Hierarchical inheritance, Hybrid inheritance, Virtual base classes, Abstract classes, Member classes: Nesting of classes Pointers Virtual Functions and Polymorphism: Pointers to objects, Pointers to derived classes, Virtual functions, pure virtual functions Managing Console I/O Operations C++ Streams, C++ Stream Classes, Unformatted I/O Operations, Managing output with manipulators.

<table>
<thead>
<tr>
<th>TEXT/REFERENCE BOOKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. D. Ravichandran, "Programming with C++", TMH</td>
</tr>
</tbody>
</table>
Course Objectives:

- To analyze AC and DC networks with network simplification techniques.
- To gain basic knowledge of transformers and their types.
- To conduct experimental procedures on different types of electrical machines.
- To understand the constructional details, characteristics, features and application areas of various types of electric motors.

Course Outcomes:

On completion of the course, student will be able to

1. Analyze basic AC & DC circuit for voltage, current and power by using KVL, KCL, and network theorems.
2. Explain the working principle of different electrical machines.
3. Select proper electrical motor for given application.
4. Design and analyze transformers.

UNIT - 1

Basic Circuit Analysis and Simplification Techniques

UNIT - 2

Transformer

Types, Construction, Transformer on No-load (Transformation ratio, emf equation), impedance transformation, losses in transformer, regulation and efficiency, rating. Auto transformer, coupling transformer, Isolation transformer, C.T. and P.T., Design of single phase transformer for instrument power supply, High frequency transformers.

UNIT - 3

DC Machines

Construction of DC Machine, Motoring and generation action, types, EMF equation, Torque equation (Torque-armature current characteristics, Torque-speed characteristics, speed-armature current characteristics), Power flow diagram. Problems on speed, torque & losses. Different
methods of speed control, different types of starters for DC shunt motor. Permanent Magnet DC motors, Applications of DC Motors.

UNIT - 4

AC Motors

Three phase Induction motors, construction and principle of operation, types, slip and torque equation, Torque-slip characteristics, condition for maximum torque & ratios, types of starters, speed control, V/f control, Applications.

Synchronous motors: Construction, principle of operation, characteristics (V curves) and applications.

UNIT - 5

Special Motors 1

UNIT - 6

Special Motors 2

Construction, types, principle, Characteristics, control circuit & applications of Stepper Motor and Servo motor. Construction, principle, characteristics, Types and applications of single phase Induction Motor.

TEXT/REFERENCE BOOKS

7. B. L. Theraja, “Electrical technology” volume 2, S. Chand.
Course Objectives:
- To introduce the concept of open Source Software.
- To enable students to learn Linux Environment.
- To make students well versed with Android and Shell Programming

Course Outcomes:
On successful completion of this course students should be able
1. To develop android applications.
2. To install and work on Linux.
3. To perform Shell Programming.

UNIT - 1

Over View of Open Source Software
Need of Open Sources, Advantages of Open sources, Applications, FOSS – FOSS usage, Free Software Movement, Commercial Aspect of Open Source Movement, Licensing, Certification, Open Source Software Development Model, comparison with close source / Proprietary software, Free Software, Open source vs source available Widely used open source software license :Apache License, BSD license, GNU General Public License, GNU Lesser General Public License, MIT License, Eclipse Public License and Mozilla Public License.

UNIT - 2

Open Source Operating System

UNIT - 3

Open Source Operating System: system Administrator task
UNIT - 4

Open source Operating System: Network and Security Administration
Basic networking commands, Configuration of Apache Web servers, DNS servers, DHCP servers, mail Servers, NFS, FTP servers. Securing servers with IP tables. Setting up cryptographic services, SSL, Managing Certificate with Open SSL, working with the GNU Privacy guard.

UNIT - 5

Open source Operating System: Shell Programming
Bash Shell Scripting, Executing Script, Working with Variables and Input, Using Control Structures, Script control, handling with signals, Creating functions, working sed and gawk - Working with web using shell script: Downloading web page as formatted text file and parsing for data, working cURL etc.

UNIT - 6

Open source Tools Only in LAB

Open Source Mobile Programming
Android programming: Setting up Android Environment (using Eclipse for android development), Activities and Intents, User Interface, Designing UI using views, Data Persistence, Content Providers, messaging and networking, Location-based Services, Publishing Android Applications.

TEXT/REFERENCE BOOKS

1. Redhat Linux 6.0 Administration Wiley
2. Linux Shell scripting Cookbook: Sarath Lakshman PACKT
3. Linux Lab - Open source Technology :Ambavade Dreamtech
5. Drupal guide to Planning and Building Web Site: Wrox Press
Course Objectives:

- This course covers the key aspects of industrial instrumentation and is designed to enable maintenance personnel to carry out commissioning, calibration and maintenance of the typical devices used for measurement in industrial systems.
- The course is ideal for those who presently possess some electrical knowledge, work in a maintenance environment and seek to expand their activities to include process control and instrumentation systems. It is the perfect complement to this course, as it explores how the instrumentation sensors would be used in a complete closed-loop control system.
- The course involves connecting various devices into current loops so that candidates learn about how current loops work and how devices are connected into them. They also calibrate these devices using a range of professional industrial Time Electronics current calibrators, used throughout the instrumentation engineering world.
- Candidates on the instrumentation course then learn about the various devices used in industrial temperature measurement systems - we concentrate on thermocouples and Pt100s and their associated cabling, connectors and transmitter heads. Candidates connect up various sensors, looking at the signals that they produce and build current loops around the relevant transmitters.
- The course notes are quite extensive and explain how the various devices are used, without getting involved in the underlying theory. For example, we would look in detail at what signals a thermocouple produces, but only very briefly at how it works.

Course Outcomes:

On completion of the course, student will be able to

1. To understand the construction and working of measuring instruments.
2. To equip the students with the basic knowledge of Pressure, Temperature, flow, level, density and viscosity measurements and Understand the equipment used in temperature, pressure, level and flow measurement
3. Correctly use a range of industrial calibration equipment
4. The student knows to calibrate the various instruments also he knows to apply the instrument in various fields.

Introduction

Basic terminologies (Range, Span, Settling time dead zone, input impedance ...) 1st order and 2nd order instruments with step, ramp and sinusoidal input/output characteristics, Transducer and types.
Measurement of force torque, velocity

Electric balance, different types of load cells, magnets, elastics load cell-strain gauge load cell-different methods of torque measurement, strain gauge, relative regular twist-speed measurement-revaluation counter- capacitive tacho-drag up type tacho D.C and A.C tacho generators – stroboscope.

Measurement of acceleration, vibration and density

Accelerometers - LVDT, piezo-electric, strain gauge and variable reluctance type accelerometers -mechanical type vibration instruments - seismic instrument as an accelerometer and vibrometer -calibration of vibration pickups - units of density, specific gravity and viscosity used in industries -Baume scale API scale - pressure head type densitometer - float type densitometer – ultrasonic densitometer Bridge type gas densitometer

Pressure measurement

Units of pressure - manometers - different types - elastic type pressure gauges - Bourde type bellows -diaphragms - Electrical methods - elastic elements with LVDT and strain gauges - capacitive type pressure gauge - piezo resistive pressure sensor - resonator pressure sensor - measurement of vacuum - McLeod gauge - thermal conductivity gauges - Ionization gauge cold cathode and hot cathode types - testing and calibration of pressure gauges - dead weight tester.

Temperature measurement

Definitions and standards - primary and secondary fixed points - calibration of thermometers different types of filled in system thermometer - sources of errors in filled in systems and their compensation -Bimetallic thermometers - Electrical methods of temperature measurement - signal conditioning of industrial RTDs and their characteristics -3 lead and 4 lead RTDs.

Thermocouples and pyrometers

Thermocouples, law of thermocouple, fabrication of industrial thermocouples, signal conditioning of thermocouple output, thermal block references functions, commercial circuits for cold junction compensation, response of thermocouple, special techniques for measuring high temperature using thermocouples, Radiation methods of temperature measurement, radiation
fundamentals, total radiation and selective radiation pyrometers, optical pyrometer, two colour radiation pyrometer.

TEXT/REFERENCE BOOKS

Course Objectives:

- To introduce Hardware Design and Development Cycle
- To introduce Software Application Design and Development Cycle
- To provide end to end understanding of Product development Echo-system.

Course Outcomes:

On completion of the course, student will be able to

1. Student will able to Design and Develop Embedded hardware product.
2. Student will able to Design and Develop Android based software.
3. Student will able to Design and Develop hardware & software part of product.

Hardware Development & Engineering Cycle

Methods Of Architecture Developments

CPU Core, Clock and Reset Generator, PLL, RTC, Program Memory, Data Memory, EEPROM, Parallel Ports, Timers/Counters, Watch-dog timers, input-Capture/Output Compare units, PWM unit, Interrupt Structure, Data converters, Serial communication using SCI, SPI, I2C, CAN and USB - Introduction to LIN and MOST - Development and debugging Support: JTAG and BDM, Host and Target Machines, Cross-Compilers, Cross-Assemblers, Linker/Locator for Embedded Software, Locator Maps, Intel hex file format/Motorola s-record format. Introduction to Integrated Development Environment (IDE)- programming concepts and embedded programming in C. Debugging and simulation techniques, Programming the target system. Peripheral Programing Developing device drivers, Configuring and programming of ports, timer / counter, data converters, interrupts and serial communication.

Real Time Operating Systems (Rtos)

Survey of software architectures, hard/soft real time systems, Tasks and Task States, Tasks and Data, Semaphores and Shared Data, Message Queues, Mailboxes and Pipes, Timer functions, Events, Memory Management, Interrupt Routines in RTOS Environment, Study and analysis of
generating low frequency bio signals, High power signal analysis using Mixed Signal oscilloscopes, FPGA Debugs and host of serial protocols like RS232/UART, CAN, RS485, USB, PC, SPI, PS. Application development in micro controllers, Programming with RTOS.

UNIT - 4

Software Development & Engineering Cycle

UNIT - 5

Creating Applications and Activities

UNIT - 6

Maps, Geocoding And Location Based Services

1. Parallel Port programming and interfacing of I/O devices.
2. Interrupt programming: Timer interfacing and analyzing capture compare module.
4. Programming and Interfacing of data converters.

Text/Reference Books

9. Embedded SoPC Design with Nios II Processor and Verilog Examples from Wiley by Pong P. Chu
10. Professional Android Application Development from Wiley by Reto Meier
14. 10. Embedded SoPC Design with Nios II Processor and Verilog Examples from Wiley by Pong P. Chu
Course Objectives:

- To introduce different methods of solving systems of linear equations using matrices and representation of geometric transformations by means of matrices.
- To provide students with a good understanding of the concepts and methods of linear algebra, described in detail in the syllabus.
- To help the students develop the ability to solve problems using linear algebra.
- To connect linear algebra to other fields both within and without mathematics.
- To develop abstract and critical reasoning by studying logical proofs and the axiomatic method as applied to linear algebra.

Course Outcomes:

1. At the end of this course the successful student will be familiar with the ideas of matrices and their applications in solving problems involving systems of linear equations and linear programming problems.
2. Also he/she will be capable of representing geometric transformations by means of matrices and to express the volume of certain figures and equation of line using determinants.
3. Students will be able to apply the concepts and methods described in the syllabus, they will be able to solve problems using linear algebra, they will know a number of applications of linear algebra.
4. They will be able to follow complex logical arguments and develop modest logical arguments.

UNIT - 1

Linear Equations
Systems of linear equations, Matrices, Elementary row operations, Row-reduced echelon matrices.

UNIT - 2

Vector Spaces
Groups, Fields, Rings, Vector spaces, Subspaces, Bases and dimension, ordered bases and coordinates.

UNIT - 3

Linear Transformations
Linear transformations, Rank-nullity theorem, Algebra of linear transformations, Isomorphism, Matrix representation, linear functionals, Annihilator, Double dual, Transpose of a linear transformation.

UNIT - 4

Elementary Canonical Forms
Characteristic values and characteristic vectors of linear transformations, Diagonalizability, Minimal polynomial of a linear transformation, Cayley- Hamilton theorem, Invariant subspaces, Direct-sum decompositions, Invariant direct sums, The primary decomposition theorem, Cyclic subspaces and annihilators, Cyclic decomposition, Rational, Jordan forms.

UNIT - 5

Inner Product Spaces

UNIT - 6

Bilinear Forms
Bilinear Forms, Symmetric Bilinear Forms, Skew Symmetric Bilinear Forms.

TEXT/REFERENCE BOOKS

Course Objectives:

- To convey the basic concepts of Nano electronics to engineering students with no background in quantum mechanics and statistical mechanics.
- Main objective of this is to provide the basic platform and deep information of different Nano electronics devices like MOSFET, FINFET, Nano metrology tools used to design the recently developing VLSI applications.
- This subject gives idea about the role and importance of the Nano electronic devices system in engineering world to develop the research ideas in VLSI.
- Recent technology proceeds with MOSFET with 64nm technology, the need Nano electronic Devices and Material subject to achieve transistor size which is less than current technology.
- The content of this course gives platform to the Nano electronics world and innovative ideas to ensure the knowledge of real time applications which helps students to stand them in Indian and multinational industries.

Course Outcomes:

1. Students will achieve basics knowledge of engineering in the field Nano electronics.
2. Basic knowledge of MOSFET, FINFET, SOI-MOSFET which are new generation transistor technology.
3. Students will get ability to research and development in field of Nano electronics Devices and Materials which is recent trends in technology.
4. With the knowledge of this course students will be the part of emerging trends of Nano electronics devices.
5. This provides information all the recent applications, Engineering Tools and research views to the students.

UNIT - 1

Overview Nano Technology
Nano devices, Nano materials, Nano characterization, Definition of Technology node, Basic CMOS Process flow.

UNIT - 2

MOS Scaling theory
MOS Scaling theory, Issues in scaling MOS, transistors: Short channel, effects, Description of a typical 65 nm MOS technology. Requirements for Non classical MOS transistor, MOS capacitor, Role of interface quality and related process techniques, Gate oxide thickness scaling trend, SiO2
vs. High-k gate dielectrics, Integration, Issues of high-k. Interface states, bulk charge, band offset, stability, reliability - Qbd high field, possible candidates, CV and IV techniques.

UNIT - 3

SOI (Silicon on insulator)
Metal gate transistor: Motivation, requirements Integration Issues, Transport in Nano MOSFET, velocity saturation, ballistic transport, injection velocity, velocity overshoot, SOI - PDSOI and FDSOI, Ultrathin body SOI - double gate transistors, integration issues.

UNIT - 4

Properties of Nano devices
Vertical transistors - Fin FET and Surround gate FET. Metal source/drain junctions – Properties of schotky functions on Silicon, Germanium and compound semiconductors - Work function pinning.

UNIT - 5

Nano electronics Semiconductor devices
Germanium Nano MOSFETs: strain, quantization, Advantages of Germanium over Silicon, PMOS versus NMOS, Compound semiconductors - material properties, MESFETs Compound Semiconductors MOSFETs in the context of channel quantization and strain, Hetero structure MOSFETs exploiting novel materials, strain, and quantization.

UNIT - 6

Characterization techniques for Nano materials
FTIR, XRD, AFM, SEM, TEM, EDAX Applications and interpretation of results, Emerging nano material, nano tubes, Nano rods and other Nano structures, LB technique, Soft lithography Microwave assisted synthesis, Self assembly.

TEXT/REFERENCE BOOKS

2. Silicon VLSI Technology, Plummer, Deal, Griffin, Pearson Education India.
3. Encyclopedia of Materials Characterization, Edited by: Brundle, C. Richard; Evans, Charles A. Jr.; Wilson, Shaun; Elsevier
Introduction and Basic Concepts of NSS

History, Philosophy, Aims & objectives of NSS Organizational structure, Concept of regular activities, Special camping, Day Camps. Basis of adoption village/slums, Methodology of conducting Survey.

Youth and community mobilization

Definition, Profile of youth, Categories of youth, Issues, Challenges and opportunities for youth, Youth as a agent of social change, Youth-adult partnership, Mapping of community stakeholders, Identifying methods of mobilization, Needs & importance of volunteerism.

Importance and Role of Youth Leadership

Meaning and types of leadership, Qualities of good leaders; Traits of leadership, Importance and role of youth leadership.

Life Competencies and skill

Definition and importance of life competencies, Communication, Inter Personal, Problem solving and decision making, Positive thinking, Self confidence and self esteem, Life goals, Stress and time management

Social Harmony and National Integration

Indian history and culture, Role of youth in peace-building and conflict resolution, Role of youth in Nation building
UNIT - 6

Youth Development Programmes in India

National Youth Policy, Youth development programmes at the National Level, State Level and voluntary sector, Youth-focused and Youth-led organizations
Course Objectives:
- To develop basis of probability and random variables.
- The primary objective of this course is to provide mathematical background and sufficient experience so that the student can read, write, and understand sentences in the language of probability theory, as well as solve probabilistic problems in engineering and applied science.

Course Outcomes:
On successful completion of the course, students should be able to:
1. Explain fundamentals of probability theory, random variables and random processes.
2. Understand the mathematical concepts related to probability theory and random processes.
3. Understand the characterization of random processes and their properties.
4. Formulate and solve the engineering problems involving random processes.
5. Analyze the given probabilistic model of the problem.
6. Make precise statements about random processes.

Introduction to Probability
Definitions, scope and history; limitation of classical and relative-frequency-based definitions, Sets, fields, sample space and events; axiomatic definition of probability, Combinatorics: Probability on finite sample spaces, Joint and conditional probabilities, independence, total probability; Bayes' rule and applications.

Random variables
Definition of random variables, continuous and discrete random variables, cumulative distribution function (cdf) for discrete and continuous random variables; probability mass function (pmf); probability density functions (pdf) and properties, Jointly distributed random variables, conditional and joint density and distribution functions, independence; Bayes' rule for continuous and mixed random variables, Function of random a variable, pdf of the function of a random variable; Function of two random variables; Sum of two independent random variables, mean, variance and moments of a random variable, Joint moments, conditional expectation; covariance and correlation, independent, uncorrelated and orthogonal random variables.
UNIT - 3

Random vector and distributions
Mean vector, covariance matrix and properties, Some special distributions: Uniform, Gaussian and Rayleigh distributions; Binomial, and Poisson distributions; Multivariate Gaussian distribution, Vector-space representation of random variables, linear independence, inner product, Schwarz Inequality, Elements of estimation theory: linear minimum mean-square error and orthogonality principle in estimation; Moment-generating and characteristic functions and their applications, Bounds and approximations: Chebysev inequality and Chernoff Bound.

UNIT - 4

Sequence of random variables and convergence
Almost sure convergence and strong law of large numbers; convergence in mean square sense with examples from parameter estimation; convergence in probability with examples; convergence in distribution, Central limit theorem and its significance.

UNIT - 5

Random process
Random process: realizations, sample paths, discrete and continuous time processes, examples, Probabilistic structure of a random process; mean, autocorrelation and auto-covariance functions, Stationarity: strict-sense stationary (SSS) and wide-sense stationary (WSS) processes, Autocorrelation function of a real WSS process and its properties, cross-correlation function, Ergodicity and its importance.

UNIT - 6

Spectral representation of a real WSS process
Power spectral density, properties of power spectral density, cross-power spectral density and properties; auto- correlation function and power spectral density of a WSS random sequence, Linear time-invariant system with a WSS process as an input: sationarity of the output, auto-correlation and power-spectral density of the output; examples with white-noise as input; linear shift-invariant discrete-time system with a WSS sequence as input, Spectral factorization theorem, Examples of random processes: white noise process and white noise sequence; Gaussian process; Poisson process, Markov Process.
<table>
<thead>
<tr>
<th>TEXT/REFERENCE BOOKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Probability and Random Processes by Geoffrey Grimmett, David Stirzaker</td>
</tr>
</tbody>
</table>
Course Objectives:

- Learners can be able to explore their knowledge in the area of EM field and its analysis.
- To learn basic coordinate system, significance of divergence, gradient, curl and its applications to EM fields.
- To understand the boundary conditions for different materials/surfaces.
- To get insight on finding solution for non-regular geometrical bodies using Finite Element Method, Method of Moments, Finite Difference Time Domain.
- To get the basics of microwave, transmission lines and antenna parameters.
- Students get acquainted with different physical laws and theorems and provide basic platform for upcoming communication technologies.

Course Outcomes:

1. Learner will apply knowledge of mathematics to solve numerical based on Coulombs law, Gauss law, Biot Savarts law, Amperes circuital law etc.
2. The basic platform of EM helps students in future courses like wave theory and antenna, Microwave and Radar Engineering, Optical Fiber Communication etc.
3. Students will understand the Maxwell’s Equations in different forms and hence EM analysis can be achieved for different materials.
4. Students will understand impact of the EM course in many engineering core subjects like Optical Fiber Communication, Microwave Engineering, Antenna engineering etc. and its impact on the technology used by the society.
5. This course understanding will encourage students to learn its usefulness in core domain areas like wave theory, antenna design and simulations, microwave theory, optical communication etc.

Mathematical Fundamentals and Static Electric Fields

UNIT - 2

Steady Electric Currents and Static Magnetic Fields

UNIT - 3

Time Varying Field & Maxwell's Equations

UNIT - 4

Electromagnetic Waves
The Helmholtz Equation, Plane waves in Lossless medium, Plane waves in a lossy medium. Poynting Vector and Power Flow in Electromagnetic Fields, Polarization of plane wave, Behavior of Plane waves at the interface of two media.

UNIT - 5

Fundamental of Antennas and Radiating Systems
Introduction, Fundamentals of Radiation, Radiated field of an Herzian dipole, Basic Antenna Parameters, Half Wave Dipole Antenna, Quarter Wave Monopole Antenna, Small Loop Antennas, Introduction to Antenna Arrays

UNIT - 6

Introduction to Numerical Techniques in Electromagnetics
Introduction, Finite difference method, Basic Concepts of the Method of Moments, Method of Moment for Wire Antennas and Wire Scatterers.

TEXT/REFERENCE BOOKS

Course Objectives:

- Objective of this course is to introduce to the students the fundamentals of microprocessor and microcontroller.
- After learning Microprocessor course, students will get advantage to pursue higher studies in Embedded Systems or employment in core industries.
- The learner can design microprocessor based systems and thus can become successful entrepreneur and meet needs of Indian and multinational industries.
- The students can design and develop processor which can be used in Robotics, Automobiles, Space and many research areas.
- The learners will acquaint optimization skills and undergo concepts design metrics for embedded systems.
- The students will get acquainted with recent trends in microcontroller like pipelining, cache memory etc.
- To understand the applications of Microprocessors and Microcontrollers.
- To understand need of microcontrollers in embedded system.
- To understand architecture and features of typical Microcontroller.
- To learn interfacing of real world input and output devices.
- To study various hardware and software tools for developing applications.

Course Outcomes:

1. Learner gains ability to apply knowledge of engineering in designing different case studies.
2. Students get ability to conduct experiments based on interfacing of devices to or interfacing to real world applications.
3. Graduates will be able to design real time controllers using microcontroller based system.
4. Students get ability to interface mechanical system to function in multidisciplinary system like in robotics, Automobiles.
5. Students can identify and formulate control and monitoring systems using microcontrollers.
6. Students will design cost effective real time system to serve engineering solution for Global, social and economic context.
7. This course understanding will enforce students to acquire knowledge of recent trends like superscalar and pipelining and thus finds recognition of continuous updation.
8. Learners get acquainted with modern tools like Programmers, Debuggers, cross compilers and current IDE i.e. integrated development environment tools.
9. Learn importance of microcontroller in designing embedded application.
10. Learn use of hardware and software tools.
11. Develop interfacing to real world devices.
Basics 8085
Basic 8085 microprocessor architecture and its functional blocks, 8085 microprocessor IC pin outs and signals, address, data and control buses. 8085 features. Interrupt system of 8085, Stack and subroutine. Types of memory and memory interfacing. Decoding techniques-absolute and partial. Mapping techniques -I/O mapped I/O and memory mapped-I/O. Serial I/O lines of 8085 and the implementation asynchronous serial data communication using SOD and SID.

Programming with 8085

Study and Interfacing of peripherals 8155, 8255, 8253/8254, 8259 with 8085

Basics of 8051:

Programming with 8051
Instruction set, addressing modes. Immediate, registers, direct and indirect data movement and exchange instructions. Push and pop op-codes. Arithmetic and logic instructions, bit level operations, jump and call instructions, input/output port programming, programming timers, asynchronous serial data communications and hardware interrupt service routines interfacing of LCD display hex keyboard ADC0808. DAC0808 and stepper motor with 8051 current trends in microprocessors and practical implementation.
Introduction to ARM Processor

ARM family architecture, register architecture, memory access and addressing modes, arithmetic and logical instructions, branching instructions.

Comparative study of salient features of 8051 and its derivatives like 89C51, 89C52, 89C2051 and 89C2052. Current processor and controller survey. (cost, availability, popularity).

UNIT - 6

TEXT/REFERENCE BOOKS

2. Microprocessor and interfacing 8085, Douglas V Hall, Tata Mc Gram Hill.
3. Microprocessor-Architecture, programming and application with 8085, gaonkar, penram international.
5. ARM system-on-chip architecture, 2e pearson education.
7. D V kodavade, S. Narvadkar, 8085-86 microprocessors Architecture progg and interfaces, wiley.
8. Udyashankara V., Mallikarjunaswamy, 8051 microcontroller, TMH.
10. Ayala, 8051 microcontroller, cengage (Thomson).
11. Rout 8085 microcontroller-architecture, programming and application, 2nd edi, penram international.
Course Objectives:

- To introduce students with transforms for analysis of Discrete time signals and systems.
- To understand the digital signal processing, sampling and aliasing.
- To use and understand implementation of digital filters.
- To understand concept of sampling rate conversion and DSP processor architecture.

Course Outcomes:

After successfully completing the course students will be able to

1. Understand use of different transforms and analyze the discrete time signals and systems.
2. Realize the use of LTI filters for filtering different real world signals.
3. Capable of calibrating and resolving different frequencies existing in any signal.
4. Design and implement multistage sampling rate converter.

UNIT - 1

DSP Preliminaries

Sampling, DT signals, sampling theorem in time domain, sampling of analog signals, recovery of analog signals, and analytical treatment with examples, mapping between analog frequencies to digital frequency, representation of signals as vectors, concept of Basis function and orthogonality. Basic elements of DSP and its requirements, advantages of Digital over Analog signal processing.

UNIT - 2

Discrete Fourier Transform

DTFT, Definition, Frequency domain sampling, DFT, Properties of DFT, circular convolution, linear convolution, Computation of linear convolution using circular convolution, FFT, decimation in time and decimation in frequency using Radix-2 FFT algorithm, Linear filtering using overlap add and overlap save method, Introduction to Discrete Cosine Transform.

UNIT - 3

Z transform

Need for transform, relation between Laplace transform and Z transform, between Fourier transform and Z transform, Properties of ROC and properties of Z transform, Relation between pole locations and time domain behavior, causality and stability considerations for LTI systems, Inverse Z transform, Power series method, partial fraction expansion method, Solution of difference equations.
IIR Filter Design
Concept of analog filter design (required for digital filter design), Design of IIR filters from analog filters, IIR filter design by approximation of derivatives, IIR filter design by impulse invariance method, Bilinear transformation method, warping effect. Characteristics of Butterworth filters, Chebyshev filters and elliptic filters, Butterworth filter design, IIR filter realization using direct form, cascade form and parallel form, Finite word length effect in IIR filter design.

FIR Filter Design
Ideal filter requirements, Gibbs phenomenon, windowing techniques, characteristics and comparison of different window functions, Design of linear phase FIR filter using windows and frequency sampling method. FIR filters realization using direct form, cascade form and lattice form, Finite word length effect in FIR filter design.

Multirate DSP and Introduction to DSP Processor

TEXT/REFERENCE BOOKS
5. K. A. Navas, R. Jayadevan, “Lab Primer through MATLAB”, PHI.
Course Objectives:
- This subject has become a very important one in today’s technology this course will give the brief introduction about the voice communication and picture communication independently.

Course Outcome:
1. This will help the students as kind of technological growth that in order to effectively and efficiently disseminate the information pertaining to voice picture and the other Medias which are there very efficiently so there we need to use the digital technology.

UNIT - 1

Introduction Speech Processing

UNIT - 2

Image and Video Coding
Introduction to Image and Video Coding, Lossy Image Compression, Quantization and Limitations, Theory of Wavelets, Discrete Wavelet Transforms, DWT on the Images and its Encoding, - Embedded Zero Tree Wavelet Encoding.

UNIT - 3

Video Coding
Basic Building Blocks, Motion Estimate Techniques, Fast Motion Estimation Techniques, Video Coding Standards, Advanced Coding Aspects.

UNIT - 4

Audio Coding
Basic Concepts, Audio Coding AC, AC -3 Decoder, MPEG - 1 Audio Coding.
VoIP
Introduction to VoIP, VoIP Signaling: H.323 Protocol, H.323 Call Controls and Enhancements Interworking with PSTN Limitations and Solution.

Multiplexing Schemes

TEXT/REFERENCE BOOKS
6. An Introduction to Speech Recognition by B. Plannerer.
Course Objectives:

- The objective of this course is to familiarize the prospective engineers with elementary principles of economics.
- It also deals with acquainting the students with standard concepts and tools that they are likely to find useful in their profession when employed in the firm/industry/corporation in public or private sector.
- It also seeks to create and awareness about the status of the current economic parameters /indicators/ policy debates. All of this is apart of the quest to help the students imbibe soft skills that will enhance their employability.

Course Outcomes:

1. Prepare engineering students to analyze cost/revenue data and carry out make economic analyses in the decision making process to justify or reject alternatives/projects on an economic basis.
2. Be able to perform and evaluate present worth, future worth and annual worth analyses on one or more economic alternatives.
3. Be able to perform and evaluate payback period and capitalized cost on one or more economic alternatives.
4. Be able to carry out and evaluate benefit/cost, life cycle and breakeven analyses on one or more economic alternatives.

Basic Principles and Methodology of Economics

Public Sector Economics
Elements of Business/Managerial Economics and forms of organizations

Business Forecasting
Elementary techniques, Statements – Cash flow, Financial, and Case Study Method.

Indian economy Brief overview of post independence period – plans.

Challenges and Policy Debates
Challenges and Policy Debates in Monetary, Fiscal, Social, External sectors.

TEXT/REFERENCE BOOKS
Course Objectives:

- To introduce basic concepts of computer organization and to illustrate the computer organization concepts by Assembly Language programming.
- To understand operating systems and how they work with the computer and students will understand the relationship between hardware and software specifically how machine organization impacts the efficiency of applications written in a high-level language.
- Students will be able to make use of the binary number system to translate values between the binary and decimal number systems, to perform basic arithmetic operations and to construct machine code instructions and students will be able to design and implement solutions for basic programs using assembly language.
- Students will be able to design logical expressions and corresponding integrated logic circuits for a variety of problems including the basic components of a CPU such as adders, multiplexers, the ALU, a register file, and memory cells and to explain the fetch-execute cycle performed by the CPU and how the various components of the data path are used in this process.

Course Outcomes:

1. An ability to design and conduct experiments, as well as to analyze and interpret data.
2. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
3. An ability to identify, formulates, and solves engineering problems.
4. The broad education necessary to understand of the impact of engineering solutions in a global, economic, environmental, and societal context.
5. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
6. Knowledge of mathematics through differential and integral calculus as well as complex variables, discrete mathematics, probability and statistics.
7. An ability to analyze and design complex electrical and electronic devices, software, and systems containing hardware and software component.
8. A breadth of knowledge over computer engineering (analog and digital circuit design and analysis, electronics, signals and systems, program design and abstraction, software engineering, computer organization and architecture, algorithm design and analysis, embedded systems, operating systems and compilers).
UNIT - 1

Processor Design
Processor organization, Information representation, Number formats, Instruction types, Fixed-point arithmetic: Addition, Subtraction, Multiplication and Division, ALU design: Basic ALU organization, Floating-point arithmetic, and Arithmetic processor.

UNIT - 2

Control Unit Design
Instruction sequencing, Instruction interpretation, hardwired control unit design, Micro programmed control unit design.

UNIT - 3

Memory Organization, Memory Technology and Classifications
Memory technology, Virtual memory concept, Segments, Pages and Files, Cache, Interleaved, Video, Dual Port memory.

UNIT - 4

Input/output Organization and Data Transfer Methods
Programmed I/O, DMA control and Interrupt based I/O, Serial transmission, Synchronization, Bus arbitration techniques, Bus architectures: ISA, EISA, VESA, PCI and SCS.

UNIT - 5

Parallel Processing and Assembly Level Programming Concepts
Basic concepts, Performance considerations, Assembly level programming, Concepts of one pass and two pass assemblers, Macros

UNIT - 6

Loaders and Linkers and Operating Systems
Relocating and Linking Loaders, Fundamentals of operating systems: MS-DOS, Windows and Linux, Case study of IBM PC or compatible.

TEXT/REFERENCE BOOKS

1. Donovan, "System Programming", TMH.
3. Moris Mano, "Computer system Architecture", PHI.
5. Dhamdhere, "Introduction to System Software", TMH.
Course Objectives:

- To familiarize the student with the design, analysis operation and management of modern data communications networks.
- To provide the student with a working knowledge of the types of communications network management systems and their strengths and limitations in solving various information network management problems.

Course Outcomes:

The students will be able to:

1. Demonstrate broad knowledge of fundamental principles and technical standards underlying.
2. Understand basic of telecommunication, networking and information technologies.
3. Architect and implement networked informative systems.
4. Continuously improve their technology knowledge and communication skills.
5. Anticipate the way technological change and emerging technologies might alter the assumptions underlying architectures and systems.

Overview of Network Management

Case histories on network, system and service management, challenges of IT managers, Network Management: Goals, organization and functions Network management architecture and organization network management perspectives.

OSI Network Management

Internet Management (SNMP)

SNMP-organizational model, System overview, Information model, communication model, functional model, SNMP proxy server, Management information, Protocol, Remote monitoring, RMON.
UNIT - 4

Broadband Network Management

UNIT - 5

Network Management Applications

Configuration management, Fault management, Performance management, Event correlation techniques, Security management, Accounting management, report management, policy based management, services, Level management.

UNIT - 6

Telecommunication Management Networks (TMN)

Need for TMN, Conceptual model, TMN standards, TMN management services architecture and TMN implementation.

TEXT/REFERENCE BOOKS

Course Objectives:

- The objective of this course is to make students to gain basic knowledge on overview of MEMS (Micro electro Mechanical System) and various fabrication techniques.
- This enables them to design, analysis, fabrication and testing the MEMS based components and to introduce the students various opportunities in the emerging field of MEMS.
- This will enables student to study applications of micro-sensors and micro-actuators, various MEMS fabrication technologies, MEMS-specific design issues and constraints, Dynamics and modeling of microsystems, getting access to fabrication and testing in academia and industry.

Course Outcomes:

1. This course provides the foundation education in MEMS through this subject study.
2. Students are provided learning experience that enables them to be familiar with the important concepts applicable to MEMS, their fabrication.
3. Be fluent with the design, analysis and testing of MEMS and application of the MEMS for different applications.

Introduction to MEMS

Control and Materials of MEMS

Controls of MEMS: Analog control of MEMS, Sliding mode control of MEMS, Digital control of MEMS, Materials for MEMS: Substrate and wafers, Active substrate material, silicon, Silicon compound, Silicon pezoresisters, Gallium arsenide, Quartz, piezoelectric crystals, Polymers.

Transducers

Chemical and Biological Transducers: basic concepts of cellular biology, chemical sensors, molecule-based biosensors, cell-based biosensors, chemical actuators, biological transducers, and electrophoresis: optical transducers, thermal transducers, magnetic transducers, RF transducers.
Overview Nano Technology:
Nano devices, Nano materials, Nano characterization, Definition of Technology node, Basic CMOS Process flow.

MOS Scaling theory:
MOS Scaling theory, Issues in scaling MOS, transistors: Short channel, effects, Description of a typical 65 nm MOS technology. Requirements for Non classical MOS transistor, MOS capacitor, Role of interface quality and related process techniques, Gate oxide thickness scaling trend, SiO2 vs. High-k gate dielectrics, Integration, Issues of high-k. Interface states, bulk charge, band offset, stability, reliability - Qbd high field, possible candidates, CV and IV techniques.

SOI (Silicon on insulator)
Metal gate transistor: Motivation, requirements Integration Issues, Transport in Nano MOSFET, velocity saturation, ballistic transport, injection velocity, velocity overshoot, SOI - PDSOI and FDSOI, Ultrathin body SOI - double gate transistors, integration issues.

Properties of Nano devices
Vertical transistors - Fin FET and Surround gate FET. Metal source/drain junctions-Properties of schotky functions on Silicon, Germanium and compound semiconductors, Work function pinning.

Nano electronics Semiconductor devices:
Germanium Nano MOSFETs: strain, quantization, Advantages of Germanium over Silicon, PMOS versus NMOS, Compound semiconductors - material properties, MESFETs Compound Semiconductors MOSFETs in the context of channel quantization and strain, Hetero structure MOSFETs exploiting novel materials, strain, and quantization.

Characterization techniques for Nano materials:
FTIR, XRD, AFM, SEM, TEM, EDAX Applications and interpretation of results, Emerging nano material, nano tubes, Nano rods and other Nano structures, LB technique, Soft lithography Microwave assisted synthesis, Self assembly.

TEXT/REFERENCE BOOKS
2. Max J. Madou: “Fundamentals Of Micro Fabrication”- The science of miniaturization,
Course Objectives:

- To understand the embedded system design issues.
- To learn real time operating system concepts.
- To understand the Embedded Linux environment.
- To learn embedded software development and testing process.

Course Outcomes:

1. Get insight of design metrics of embedded systems to design real time applications to match recent trends in technology.
2. Understand Real time systems concepts.
3. Understand Linux operating system and device drivers.
4. Get to know the hardware – software co design issues and testing methodology for embedded system.

UNIT - 1

Introduction to Embedded Computing

UNIT - 2

Embedded System Architecture

Instruction Set Architecture, CISC and RISC instruction set architecture

Basic Embedded Processor/Microcontroller Architecture: CISC Examples (Motorola 68HC11 Example, 8051), RISC Example (ARM), DSP Processors, Harvard Architecture, PIC

Memory System Architecture: Caches, Virtual Memory, Memory Management Unit and Address Translation

I/O Sub-system: Busy-wait I/O, DMA, Interrupt driven I/O, Co-processors and Hardware Accelerators

Processor Performance Enhancement: Pipelining, Super-scalar Execution, CPU Power Consumption

UNIT - 3

Designing Embedded Computing Platform

Using CPU Bus: Bus Protocols, Bus Organization
Memory Devices and their Characteristics: RAM, ROM, UVROM, EEPROM, Flash Memory, DRAM

I/O Devices: Timers and Counters, Watchdog Timers, Interrupt Controllers, DMA Controllers, A/D and D/A Converters, Displays, Keyboards, Infrared devices

Component Interfacing: Memory Interfacing, I/O Device Interfacing

Interfacing Protocols: GPIB, FIREWIRE, USB, IRDA

Designing with Processors: System Architecture, Hardware Design, FPGA Based Design

Implementation: Development Environment, Debugging Techniques, Manufacturing and Testing

Design Examples: Data Compressor, Alarm Clock.

UNIT - 4

Programming Embedded Systems

Program Design: Design Patterns for Embedded Systems, Models of Program, Control and Data flow Graph

Programming Languages: Desired Language Characteristics, Introduction to Object Oriented Programming, Data Typing, Overloading and Polymorphism, Control, Multi-tasking and Task Scheduling, Timing Specifications, Run-time Exception handling

UNIT - 5

Operating System

Scheduling: Rate-Monotonic Scheduling, Earliest-Deadline First Scheduling, Task Assignment, Fault-Tolerant Scheduling

Inter-process Communication: Signals, Shared Memory Communication, Message-Based Communication.
Real-time Memory Management: Process Stack Management, Dynamic Allocation
I/O: Synchronous and Asynchronous I/O, Interrupt Handling, Device Drivers, Real-time Transactions and Files.
Example Real-time OS: Vx Works, RT-Linux, Psos

UNIT - 6

Embedded System Development
Design Methodologies: UML as Design tool, UML notation, Requirement Analysis and Use case Modeling, Static Modeling, Object and Class Structuring, Dynamic Modeling
Architectural Design: Hardware-Software Partitioning, Hardware-Software Integration
Design Examples: Telephone PBX, Inkjet Printer, PDA, Set-top Box, Elevator Control System, ATM System
Fault-tolerance Techniques, Reliability Evaluation Techniques
Embedded control applications: Introduction, Open-loop and Closed Loop Control Systems,

TEXT/REFERENCE BOOKS

Course Objectives:

- To understand the concepts of project definition, life cycle, and systems approach.
- To develop competency in project scoping, work definition, and work breakdown structure (WBS).
- To handle the complex tasks of time estimation and project scheduling, including PERT and CPM.
- To develop competencies in project costing, budgeting, and financial appraisal.
- To gain exposure to project control and management, using standard tools of cost and schedule variance analysis.
- To appreciate the elements of risk and quality in hi-tech projects.
- To learn project management by “practice”, through the medium of “study projects”; and
- To appreciate and understand the use of computers in project management, especially a tool like MS Project.

Course Outcomes:

Upon completion of Project Management, you will be able to

1. Demonstrate professional level competencies in the following key areas of project management and project management leadership.
2. Manage the selection and initiation of individual projects and of portfolios of projects in the enterprise.
3. Conduct project planning activities that accurately forecast project costs, timelines, and quality. Implement processes for successful resource, communication, and risk and change management.
4. Demonstrate effective project execution and control techniques that result in successful projects.
5. Conduct project closure activities and obtain formal project acceptance.
6. Demonstrate a strong working knowledge of ethics and professional responsibility.
7. Demonstrate effective organizational leadership and change skills for managing projects, project teams, and stakeholders.

Introduction to project management

Importance, objectives & functions of management, Principles of Management, Categories of project, Project Failure, Project--- life cycle Concept and Cost Components ,Project Management Book of Knowledge (PMBOK) – Different Domain Areas, Project management Institute and
Certified Project Management Professionals (PMP) Importance of organizational Structure in Management- Authority / Responsibility Relation.

UNIT - 2

Project planning and scheduling

UNIT - 3

Project Monitoring and control
Introduction to use of Project Management Softwares – MS Project / Primavera, Case study on housing project scheduling for a small project with minimum 25 activities.

UNIT - 4

Project economics
Introduction to project economics - Definition, principles, Importance in construction Industry, Difference between Cost, Value, Price, Rent, simple and compound interest, profit, Annuities, Demand, demand schedule, law of demand, demand curve, elasticity of demand, supply, supply schedule, supply curve, elasticity of supply Equilibrium, Equilibrium price, Equilibrium amount, factors affecting price determination. Law of Diminishing Marginal Utility, Law of substitution, Concept of Cost of Capital, Time value of money, Sources of Project Finances – concepts of Debt Capital and Equity Capital. Types of Capital – Fixed and working. Equity shares and debenture capital.

UNIT - 5

Project Resources and safety aspects
Dr. Babasaheb Ambedkar Technological University

UNIT - 6

Project appraisal
Types of Appraisals such as political, social, environmental, techno-legal, financial and Economical, Criteria for project selection - benefit - cost analysis, NPV, IRR, Pay-back period, Break Even analysis [Fundamental and Application Component ,Study of Project Feasibility report and Detailed Project Report (DPR) ,Role of Project Management Consultants – pre tender and Post tender.

TEXT/REFERENCE BOOKS

2. Project Management—Khatua—Oxford University University
7. The Essentials of Project Management by Dennis Lock, Gower Publishing Ltd. UK.
10. Engineering Economic Analysis, 10/e—Newnan--- Oxford University University.
UNIT - 1

Citizenship
Basic Features of Constitution of India, Fundamental Rights and Duties, Human Rights, Consumer awareness and the legal rights of the consumer, RTI

UNIT - 2

Health, Hygiene & Sanitation
Definition, Needs and scope of health education, Food and Nutrition, Safe drinking water, Water borne diseases and sanitation, National Health Programme, Reproductive health, Healthy Lifestyles, HIV AIDS, Drugs and Substance abuse, Home Nursing, First Aid

UNIT - 3

Youth and Yoga
History, Philosophy and concept of Yoga, Myths and misconceptions about yoga, Different Yoga traditions and their Impacts, Yoga as a preventive, promotive, and curative method, Yoga as a tool for healthy lifestyle.

UNIT - 4

Environment Issues
Environment conservation, Enrichment and Sustainability, Climate change, Waste management, Natural resource management, Rain water harvesting, Energy conservation, Waste land development, Soil conservations and forestation

UNIT - 5

Disaster a Management
Introduction to Disaster Management, Classification disaster, Role of youth in Disaster Management

UNIT - 6

Youth and crime
Sociological and psychological factors influencing youth crime, Peer mentoring in preventing crime, Awareness about anti-ragging, Cybercrime and its prevention, Juvenile justice
Course Objectives:

- The objective of the course is to introduce the Concepts of basic wireless mobile communication systems.
- To learn and understand the basic principles of Telecommunication switching, traffic and networks.
- To learn and understand basic concepts of cellular system, wireless propagation and the techniques used to maximize the capacity of cellular network.
- To learn and understand architecture of GSM and CDMA system.
- To understand mobile management, voice signal processing and coding in GSM and CDMA system.

Course Outcomes:

After successfully completing the course students will be able to

1. Explain and apply the concepts telecommunication switching, traffic and networks.
2. Analyze the telecommunication traffic.
3. Analyze radio channel and cellular capacity.
4. Explain and apply concepts of GSM and CDMA system.

UNIT - 1

Introduction and Cellular Concept

Existing technology, Evolution in wireless systems, Trends in cellular system Frequency Reuse channel Assignment Strategies, Handoff Strategies, Interference and System Capacity, Cellular System, Design in worst case with an omni Directional Antenna, Co-Channel Interference Reduction with use of Directional Antenna, Improving Coverage and Capacity in Cellular systems, Trunking and Grade of service

UNIT - 2

Wireless Communication Systems GSM

GS Services and features, GSM Architecture and interfaces, GSM Radio Sub System, GSM Channel Types, Traffic Channels, Control Channels, Example of a GSM call, Frame structure for GSM, Signal Processing in GSM, GPRS.
UNIT - 3
Wideband Modulation Techniques and OFDM
Basic Principles, OFDM Signal Mathematical representation, Block Diagram, Selection Parameters for modulation, Pulse shaping, Windowing, Spectral Efficiency, Synchronization

UNIT - 4
Wireless Communication Systems CDMA IS95
Direct sequence Spread Spectrum, Spreading codes, Multipath Signal Propagation and RAKE receiver, Frame Quality and BER Requirements, Critical challenges of CDMA,TIA IS95 System, Physical and Logical Channels of IS95, CDMA IS95 call processing, soft hand off and power control in CDMA, Access and Paging Channel Capacity, Reverse and Forward Link Capacity of a CDMA System.

UNIT - 5
Wireless Communication Systems
CDMA 2000: CDMA layering structure, CDMA 2000 channels, logical channels, forward link physical, forward link features, reverse physical channels, CDMA 2000 Media Access control and LAC sub layer, Data services, Data services in CDMA 2000, mapping of logical channels to physicals, evolution of CDMA IS95 to CDMA 2000.

UNIT - 6
More Wireless Communication Systems
Bluetooth, Wi Fi Standards, WIMAX, Wireless Sensor Networks, Zigbee, UWB, IEEE 802.20 and Beyond.

TEXT/REFERENCE BOOKS
Course Objectives:

- To introduce the elements of control system and their modeling using various Techniques.
- To introduce methods for analyzing the time response, the frequency response and the stability of systems.
- To introduce the concept of root locus, Bode plots, Nyquist plots.
- To introduce the state variable analysis method.
- To introduce concepts of PID controllers and digital and control systems.
- To introduce concepts programmable logic controller.

Course Outcomes:

On completion of the course, student will be able to:

1. Determine and use models of physical systems in forms suitable for use in the analysis and design of control systems.
2. Determine the (absolute) stability of a closed-loop control system.
3. Perform time domain and frequency domain analysis of control systems required for stability analysis.
4. Perform time domain and frequency domain correlation analysis.
5. Apply root-locus, Frequency Plots technique to analyze control systems.
6. Express and solve system equations in state variable form.

UNIT - 1

Control System Modeling

Basic Elements of Control System, Open loop and Closed loop systems, Differential equations and Transfer function, Modeling of Electric systems, Translational and rotational mechanical systems, Block diagram reduction Techniques, Signal flow graph.

UNIT - 2

Time Response Analysis

Standard input signals, Time response analysis of First Order Systems, Time response analysis of second order systems, Steady state errors and error constants, design specifications for second order systems.
<table>
<thead>
<tr>
<th>UNIT - 3</th>
<th>Stability Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept of Stability, Routh-Hurwitz Criterion, Relative Stability, Root Locus Technique, Construction of Root Locus, Dominant Poles, Application of Root Locus Diagram.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT - 4</th>
<th>Frequency Response Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency domain Versus Time domain analysis and its correlation, Bode Plots, Polar Plots and development of Nyquist Plots. Frequency Domain specifications from the plots, Stability analysis from plots.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT - 5</th>
<th>State Variable Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>State space advantages and representation, Transfer function from State space, physical variable form, phase variable forms: controllable canonical form, observable canonical form, Solution of homogeneous state equations, state transition matrix and its properties, computation of state transition matrix by Laplace transform method only, Concepts of Controllability and Observability.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT - 6</th>
<th>Controllers and Digital Control Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to PLC: Block schematic, PLC addressing, any one application of PLC using Ladder diagram. Introduction to PID controller: P, PI, PD and PID Characteristics and concept of Zeigler-Nicholas method.</td>
<td></td>
</tr>
<tr>
<td>Digital control systems: Special features of digital control systems, Necessity of sample and hold operations for computer control, z-transform and pulse transfer function, Stability and response of sampled-data systems.</td>
<td></td>
</tr>
</tbody>
</table>

TEXT/REFERENCE BOOKS

Course Objectives:
- To understand the building blocks of digital communication system.
- To prepare mathematical background for communication signal analysis.
- To understand and analyze the signal flow in a digital communication system.
- To analyze error performance of a digital communication system in presence of noise and other interferences.
- To understand concept of spread spectrum communication system.

Course Outcomes:
1. Analyze the performance of a baseband and pass band digital communication system in terms of error rate and spectral efficiency.
2. Perform the time and frequency domain analysis of the signals in a digital communication system.
3. Select the blocks in a design of digital communication system.
4. Analyze Performance of spread spectrum communication system.

UNIT - 1
Digital Transmission of Analog Signal

UNIT - 2
Baseband Digital Transmission
Digital Multiplexing: Multiplexers and hierarchies, Data Multiplexers. Data formats and their spectra, synchronization: Bit Synchronization, Scramblers, Frame Synchronization. Inter-symbol interference, Equalization.

UNIT - 3
Random Processes
Introduction, Mathematical definition of a random process, Stationary processes, Mean, Correlation & Covariance function, Ergodic processes, Transmission of a random process
through a LTI filter, Power spectral density, Gaussian process, noise, Narrow band noise, Representation of narrowband noise in terms of in phase & quadrature components.

UNIT - 4

Baseband Receivers

UNIT - 5

Passband Digital Transmission

Pass band transmission model, Signal space diagram, Generation and detection, Error Probability derivation and Power spectra of coherent BPSK, BFSK and QPSK. Geometric representation, Generation and detection of - M-ary PSK, M-ary QAM and their error probability, Generation and detection of -Minimum Shift Keying, Gaussian MSK, Non-coherent BFSK, DPSK and DE PSK ,Introduction to OFDM.

UNIT - 6

Spread Spectrum Techniques

TEXT/REFERENCE BOOKS

Course Objectives:
- To develop analytical abilities.
- To develop communication skills.
- To introduce the students to skills necessary for getting, keeping and being successful in a profession.
- To expose the students to leadership and team-building skills.

Course Outcomes:
On completion of the course, student will be able to:
1. Have skills and preparedness for aptitude tests.
2. Be equipped with essential communication skills (writing, verbal and non-verbal)
3. Master the presentation skill and be ready for facing interviews.
4. Build team and lead it for problem solving.

UNIT - 1

Soft Skills & Communication basics
Soft skills Vs hard skills, Skills to master, Interdisciplinary relevance, Global and national perspectives on soft skills. Resume, Curriculum vitae, How to develop an impressive resume, Different formats of resume – Chronological, Functional, Hybrid, Job application or cover letter, Professional presentation- planning, preparing and delivering presentation, Technical writing.

UNIT - 2

Arithmetic and Mathematical Reasoning
Aspects of intelligence, Bloom taxonomy, multiple intelligence theory, Number sequence test, mental arithmetic (square and square root, LCM and HCF, speed calculation, reminder theorem).

UNIT - 3

Analytical Reasoning and Quantitative Ability
Matching, Selection, Arrangement, Verifications (Exercises on each of these types). Verbal aptitude (Synonym, Antonym, Analogy).
Grammar and Comprehension

English sentences and phrases, Analysis of complex sentences, Transformation of sentences, Paragraph writing, Story writing, Reproduction of a story, Letter writing, précis writing, Paraphrasing and e-mail writing.

Skills for interviews

Interviews- types of interviews, preparatory steps for job interviews, interview skill tips, Group discussion- importance of group discussion, types of group discussion, difference between group discussion, panel discussion and debate, personality traits evaluated in group discussions, tips for successful participation in group discussion, Listening skills- virtues of listening, fundamentals of good listening, Non-verbal communication-body movement, physical appearance, verbal sounds, closeness, time.

Problem Solving Techniques

TEXT/REFERENCE BOOKS

4. Philip Carter, "The Complete Book of Intelligence Test", John Willey & Sons Ltd.
Course Objectives:
- To learn the fundamental concepts of Digital Image Processing.
- To study basic image processing operations.
- To understand image analysis algorithms.
- To expose students to current applications in the field of digital image processing.

Course Outcomes:
After successfully completing the course students will be able to
1. Develop and implement algorithms for digital image processing.
2. Apply image processing algorithms for practical object recognition applications.

UNIT - 1

Fundamentals of Image Processing

UNIT - 2

Image Enhancement and Restoration

UNIT - 3

Image Compression
UNIT - 4

Image Segmentation and Morphological Operations

UNIT - 5

Representation and Description

UNIT - 6

Object Recognition and Applications

Feature extraction, Patterns and Pattern Classes, Representation of Pattern classes, Types of classification algorithms, Minimum distance classifier, Correlation based classifier, Bayes classifier. Applications: Biometric Authentication, Character Recognition, Content based Image Retrieval, Remote Sensing, Medical application of Image processing.

TEXT/REFERENCE BOOKS

Course Objectives:

- To introduce students to different power devices to study their construction, characteristics and turning on circuits.
- To give an exposure to students of working & analysis of controlled rectifiers for different loads, inverters, DC choppers, AC voltage controllers and resonant converters.
- To study the different motor drives, various power electronics applications like UPS, SMPS, etc. and some protection circuits.

Course Outcomes:

After successfully completing the course students will be able to

1. Design & implement a triggering / gate drive circuit for a power device.
2. Understand, perform & analyze different controlled converters.
3. Evaluate battery backup time & design a battery charger.
4. Design & implement over voltage / over current protection circuit.

UNIT - 1

Power Devices

Construction, Steady state characteristics & Switching characteristics of SCR, Construction, Steady state characteristics Power MOSFET & IGBT. SCR ratings: IL, IH, VBO, VBR, dv/dt, di/dt, surge current & rated current. Gate characteristics, Gate drive requirements, Synchronized UJT triggering for SCR, triggering of SCR using IC-785, gate drive circuits for Power MOSFET / IGBT.

UNIT - 2

AC-DC Power Converters

UNIT - 3

DC-AC Converters

DC-DC converters & AC Voltage Controller

Power Electronics Applications

Resonant Converters & Protection of Power Devices & Circuits

Need for resonant converters, SLR half bridge DC/DC converter in low frequency, Concept of zero current switching (ZCS) and zero voltage switching (ZVS) resonant converters. Cooling & heat sinks, over voltage conditions, over voltage protection circuits, over current fault conditions, over current protection. Electromagnetic interference: Sources, minimizing techniques.

TEXT/REFERENCE BOOKS

8. Nagrath Kothari, “Electrical Machines”, TMH.
Course Objectives:
The objective is to provide students with a strong understanding of the fundamental principles and practical applications of audio and video engineering with latest updates.

Course Outcomes:
After successfully completing the course students will be able to
1. Understand the concept of basic television signal processing.
2. Identify globally accepted colour TV standards.
3. Demonstrate the need of audio and video compression techniques in real life.
4. Acquire knowledge of latest digital TV systems and applications.
5. Describe the attributes of acoustics, sound engineering and storage media.

UNIT - 1
Fundamentals of Colour Television
Aspect, scanning, perception of brightness and colour, colour mixing, composite video signal, synchronisation details, digital TV camera, modulation of audio and video, terrestrial signal transmission, video displays: LCD vs LED.

UNIT - 2
Colour Standards and digital video
Standards: NTSC, PAL, SECAM colour system, generalized colour TV receiver block diagram, study of functionality of each block, alignment issues, sampling of video signal, colour sub sampling, composite vs component video, interlace vs progressive scan.

UNIT - 3
Digital TV
Digital video, resolution, notation, digital video formats, digital video quality measure, video restoration, video streaming, DTH, Video compression: MPEG 2, MPEG 4, comparison of SDTV, EDTV and HDTV.

UNIT - 4
Advanced TV Systems and Techniques
Introduction to UHDTV: 4K and 8K, IPTV/web TV, smart TV, Wi-Fi TV, digital surveillance, 3D TV concept, over view of H.264 features, camcorders, webcams, perspective of TV White spaces.
UNIT - 5

Acoustics
Human Hearing and sound, frequency range, dynamic range, masking, digital representation of sound wave, intensity, decibel sound level, sound waves in rooms, reverberation, room/studio acoustics as a component in speech system, PA systems, special types of microphones and speakers.

UNIT - 6

Audio and Video Recording Systems
Digital sound, sound recording, CD/DVD player, MP3 player, Blue Ray DVD Player, ITU-T(G) compression standards, multichannel/Dolby 5.1 sound in DTV.

TEXT/REFERENCE BOOKS

Prerequisites: Basic knowledge of C language is required.

Course Objectives:
- To assess how the choice of data structures and algorithm design methods impacts the performance of programs.
- To choose the appropriate data structure and algorithm design method for a specified application.
- To study the systematic way of solving problems, various methods of organizing large amounts of data.
- To solve problems using data structures such as linear lists, stacks, queues, binary trees, binary search trees, and graphs and writing programs for these solutions.
- To employ the different data structures to find the solutions for specific problems.

Course Outcomes:
On completion of the course, student will be able to:
1. Discuss the computational efficiency of the principal algorithms such as sorting & searching.
2. Write and understand the programs that use arrays & pointers in C.
3. Describe how arrays, records, linked structures are represented in memory and use them in algorithms.
4. Implement stacks & queues for various applications.
5. Understand various terminologies and traversals of trees and use them for various applications.
6. Understand various terminologies and traversals of graphs and use them for various applications.

Introduction to C and Algorithm

Constants, variables and keywords in C, operators and control structure in C (decision, loop and case), functions, macros, arrays and string manipulation, structure, union, enumeration, bitwise operations Functions: Parameter passing call by value and call by reference, scope rules, functions and pointers, function returning pointer, pointer to function, String manipulations using Arrays, pointer to pointer, Dynamic memory management.

UNIT - 2

Searching and Sorting
Need of searching and sorting, why various methods of searching and sorting, Sorting methods: Linear, binary search and Fibonacci Search.
Sorting methods: Bubble, insertion, selection, merge, Time complexity of each searching and sorting algorithm, Hashing Techniques.

UNIT - 3

Stack and Queues
Stacks: Concept, Basic Stack operations, Array representation of stacks, Stack as ADT, Stack Applications: Reversing data, Arithmetic expressions conversion and evaluation.
Queues: Concept, Queue operations, Array representation of queues, Queue as ADT, Circular queues, Application of queues: Categorizing data, Simulation of queues.

UNIT - 4

Linked List
Concept of linked organization, singly linked list, stack using linked list, queue using linked list, doubly linked list, circular linked list, Linked list as ADT. Representation and manipulations of polynomials using linked lists, comparison of sequential linked organization with linked organization.

UNIT - 5

Trees
Introduction to trees: Basic Tree Concepts, Binary Trees: Concept & Terminologies, Representation of Binary Tree in memory, Traversing a binary tree, Binary Search Trees (BST): Basic Concepts, BST operations.

UNIT - 6

Graphs
Basic Concepts & terminology, Sequential representation of graphs; Adjacency matrix, Path matrix, Linked representation of a graph, Operations on graph, Traversing a graph, Spanning trees; Minimum Spanning tree, Kruskal’s Algorithm, Prim’s Algorithm. Dijkstra's Shortest Path Algorithm.
<table>
<thead>
<tr>
<th></th>
<th>Text/Reference Books</th>
</tr>
</thead>
</table>
Course Objectives:
The students obtain sufficient background and technical knowledge to understand contemporary issues in audio engineering.

Course Outcomes:
After completion of this course students will be able to

1. Understand the linear acoustic wave equation and explain the relationship between pressure and particle velocity for plane waves and spherical waves.
2. Calculate and interpret the near-field and far-field response of a circular piston radiator mounted in an infinite baffle.
3. Explain the basic physiology of the human hearing system and elementary psychoacoustical principles (e.g., sensitivity as a function of frequency, simultaneous masking, and difference limens).
4. Use geometrical measurements and material properties to calculate Sabine reverberation time for a room.
5. Explain the basic operation of dynamic (moving-coil) loudspeakers and condenser (capacitive) microphones.
6. Understand the principles of recording studio signal flow.
7. Discuss the strengths and weaknesses of modern perceptual audio coders such as MP3.
8. Describe the attributes of CD, DVD, Blue-Ray storage media.

UNIT - 1

Introduction
Introduction, audio and acoustics sub disciplines, survey Fundamental quantities, Fourier review, mass and vibration Damping, complex exponential solutions, forced oscillation, Resonance, electrical circuit analogies, Acoustic wave equation.

UNIT - 2

Harmonic plane waves
Harmonic plane waves, intensity, impedance Spherical waves, sound level, dB examples Radiation from small sources, Baffled simple source, piston radiation, Near field, far field Radiation impedance, speed of sound measurement.
UNIT - 3

Environmental acoustics and noise criteria
The ear, hearing, etc. hearing and detection, Environmental acoustics and noise criteria, OSHA, architectural isolation, Example calculations Architectural acoustics, reverb, Absorbing materials, direct-reverberant ratio

UNIT - 4

Relationships among music, audio, acoustics, and electronics
Audio engineering introduction, Audio engineering, units, concepts.

UNIT - 5

Applications and Studio electronics
Electrodynamic transducers, and Microphones, room acoustics, Analog storage history (tape, LP disc history), Loudspeakers.

UNIT - 6

Digital audio
CD and DVD principles, Audio DSP, Multimedia audio, MP3, etc., SMPTE and synchronization MIDI.

TEXT/REFERENCE BOOKS

2. Handouts and reprints (in class)
Course Objectives:

- The concept and theory of digital Electronics are needed in almost all electronics and telecommunication engineering fields and in many other engineering and scientific disciplines as well.
- The main objective of this course is to lay the foundation for further studies in areas such as communication, VLSI, computer, microprocessor etc. One of the most important reasons for the unprecedented growth of digital electronics is the advent of integrated circuit.
- This course will explore the basic concepts of digital electronics.

Course Outcomes:

Having successfully completed this course, the student will be able to:

1. Understand the basic logic gates and various variable reduction techniques of digital logic circuit in detail.
2. Understand, identify and design combinational and sequential circuits.
3. Design and implement hardware circuit to test performance and application for what it is being designed.
4. Simulate and verify using computer simulation software to obtain desired result.
5. Understand and verify simulated circuit model with hardware implementation.

Combinational Logic Design

Standard representations for logic functions, k map representation of logic functions (SOP m POS forms), minimization of logical functions for minterms and maxterms (upto 4 variables), don’t care conditions, Design Examples: Arithmetic Circuits, BCD - to – 7 segment decoder, Code converters. Quine Mc-Cluskey methods. Adders and their use as subtractors, look ahead carry, ALU, Digital Comparator, Parity generators/checkers, Static and dynamic hazards for combinational logic. Multiplexers and their use in combinational logic designs, multiplexer trees, Demultiplexers and their use in combinational logic designs, Decoders, demultiplexer trees.

Sequential Logic Design

1 Bit Memory Cell, Clocked SR, JK, MS J-K flip flop, D and T flip-flops. Use of preset and clear terminals, Excitation Table for flip flops. Conversion of flip flops. Application of Flip flops: Registers, Shift registers, Counters (ring counters, twisted ring counters), Sequence
Generators, ripple counters, up/down counters, synchronous counters, lock out, Clock Skew, Clock jitter. Effect on synchronous designs.

UNIT - 3

Introduction to HDLs
Library, Entity, Architecture, Modeling styles, Data objects, Concurrent and sequential statements, Design examples, using VHDL for basic combinational and sequential circuits, Attributes (required for practical) (Test benches and FSM excluded).

UNIT - 4

State Machines
Basic design steps- State diagram, State table, State reduction, State assignment, Mealy and Moore machines representation, Implementation, finite state machine implementation, Sequence detector, Introduction to algorithmic state machine.

UNIT - 5

Digital Logic Families
Classification of logic families, Characteristics of digital ICs-Speed of operation, power dissipation, figure of merit, fan in, fan out, current and voltage parameters, noise immunity, operating temperatures and power supply requirements. TTL-operation of TTL NAND gate, active pull up, wired AND, open collector output, unconnected inputs. Tri-State logic. CMOS logic – CMOS inverter, NAND, NOR gates, unconnected inputs, wired logic, open drain output. Interfacing CMOS and TTL. Comparison table of Characteristics of TTL, CMOS, ECL, RTL, I2L, DCTL.

UNIT - 6

Programmable Logic Devices and Semiconductor Memories
A] Programmable logic devices: Detail architecture, Study of PROM, PAL, PLA, Designing combinational circuits using PLDs.

B] Semiconductor memories: memory organization and operation, expanding memory size, Classification and characteristics of memories, RAM, ROM, EPROM, EEPROM, NVRAM, SRAM, DRAM, expanding memory size, Synchronous DRAM (SDRAM), Double Data Rate SDRAM, Synchronous SRAM, DDR and QDR SRAM, Content Addressable Memory.

TEXT/REFERENCE BOOKS

Dr. Babasaheb Ambedkar Technological University

Course Objectives:
- To understand the applications of electromagnetic engineering.
- To formulate and solve the Helmholtz wave equation and solve it for Uniform Plane Wave.
- To analyze and understand the Uniform plane wave propagation in various media.
- To solve the electric field and magnetic fields for a given wire antenna.

Course Outcomes:
After successfully completing the course students will be able to
1. Formulate the wave equation and solve it for uniform plane wave.
2. Analyze the given wire antenna and its radiation characteristics.
3. Identify the suitable antenna for a given communication system.

UNIT - 1

Uniform Plane Waves

UNIT - 2

Wave Propagation

UNIT - 3

Antenna Fundamentals
Introduction, Types of Antenna, Radiation Mechanism, Antenna Terminology: Radiation pattern, radiation power density, radiation intensity, directivity, gain, antenna efficiency, half power beam width, bandwidth, antenna polarization, input impedance, antenna radiation efficiency, effective length, effective area, reciprocity. Radiation Integrals: Vector potentials A, J, F, M, Electric and magnetic fields electric and magnetic current sources, solution of inhomogeneous vector potential wave equation, far field radiation.
Wire Antennas
Analysis of Linear and Loop antennas: Infinitesimal dipole, small dipole, and finite length dipole half wave length dipole, small circular loop antenna. Complete Analytical treatment of all these elements.

Antenna Arrays

Antennas and Applications
Structural details, dimensions, radiation pattern, specifications, features and applications of following Antennas: Hertz & Marconi antennas, V- Antenna, Rhombic antenna. TW antennas. Loop antenna, Whip antenna, Biconical, Helical, Horn, Slot, Microstrip, Turnstile, Super turnstile & Lens antennas. Antennas with parabolic reflectors.

TEXT/REFERENCE BOOKS
Course Objectives:

- After learning OFC course, students will get advantage to pursue higher studies or employment in core engineering/communication engineering companies.
- To explore the knowledge in the area of LASERs and electro-optics.
- To get insight into different fiber types, fabrication methods, optical transmission characteristics, optical sources, optical detectors and optical amplifiers.
- To understand different design considerations in optical links involving link power budget and rise time budget.
- To mold students professionally and further it also acquaint with emerging trends in fiber, advanced optical systems, different optical sources and detectors.

Course Outcomes:

1. Learner will apply knowledge of mathematics to solve numerical based on step index and graded index fibers pertaining to MSI and MGI, SMSI.
2. Students will understand fiber performance parameters like NA, Group delay, Phase and Group velocity. They will understand optical transmission characteristics theoretically and practically.
3. Learners will understand analog and digital links, design consideration of optical links, WDM, fiber data transfer rates in social context.
4. With the basic knowledge of OFC course, students can peruse higher studies in LASERs and electro-optics.
5. Students will apply the knowledge of optical key elements to understand optical fiber communication systems.
6. Students will understand impact of OFC in LAN, MAN, WAN, ISDN etc.
7. This course understanding will enforce students to work in communication engineering domain and will cope up the selves to work in professional environment.
8. This course understanding will enforce students to work in communication engineering domain and new emerging technology of sources and detectors to develop the optical fiber systems.

Optical communication fundamentals

Introduction to vector nature of light, propagation of light, propagation of light in a cylindrical dielectric rod, Ray model, wave model. Different types of optical fibers, Modal analysis of a step index fiber. Signal degradation on optical fiber due to dispersion and attenuation.
UNIT - 2
Optical sources
LEDs: structure and its characteristics, Lasers: structure and its characteristics.

UNIT - 3
Optical detectors
Photo-detectors - pin- detectors, detector responsivity, noise, optical receivers

UNIT - 4
Fabrication Techniques
Fabrication of fibers and measurement techniques like OTDR

UNIT - 5
Optical link design
BER calculation, quantum limit, power penalties, Optical switches - coupled mode analysis of directional couplers, electro-optic switches, nonlinear effects in fiber optic links.

UNIT - 6
Optical Modulation
Concept of self-phase modulation, group velocity dispersion and solution based communication. Optical amplifiers - EDFA, Raman amplifier, and WDM systems.

TEXT/REFERENCE BOOKS
Course Objectives:
To teach the students
- Radio-frequency spectrum space, microwave communication.
- Microwave principles, working of microwave devices.
- RADAR and their applications.

Course Outcomes:
After Completing this course student will be able to
1. Analyze the microwave passive circuit components and design the tuning and matching networks.
2. Identify the state of art in microwave tubes and semiconductors and their uses in real life.
3. Apply the microwave devices and RADAR for industrial and scientific purposes.

UNIT - 1

Waveguides and Microwave Components
Frequency bands and characteristics of microwaves, Rectangular and circular waveguides, mode analysis, Resonators, reentrant cavities, scattering parameters, tees, hybrid ring, directional couplers, phase shifters, terminations attenuators, ferrite devices, such as isolators, gyrators, and circulators.

UNIT - 2

Impedance Matching and Tuning
Lumped element matching, Single stub tuning, double stub tuning, triple stub tuning, Quarter wave transformer.

UNIT - 3

Generation and Amplification of Microwaves
Two Cavity Klystron and Reflex Klystron, Helix Travelling Wave Tube and Backward Wave Oscillator, Cross Field Amplifier, Cylindrical Magnetron, and Gyrotrons.

UNIT - 4

Semiconductor Microwave Devices (construction, working, equivalent circuit and performance characteristics)
Varactor, PIN, Tunnel, Point Contact, Schottky Barrier, Gunn, IMPATT, TRAPATT, and BARITT, BJT, Hetro junction BJT, MESFET, and HEMT Parametric Amplifiers.
RADAR
Basics of RADAR and RADAR range equation, Types of RADAR: Pulsed, Continuous wave and FMCW, Doppler, MTI, and Phased Array, Types of displays and Clutter, Tracking RADAR: Mono pulse, Conical, Sequential lobing

Microwave Applications
Microwave heating and bio-medical applications, Remote sensing RADAR, MSTRADAR, radiometer, instrumentation landing system, and RADAR based navigation.

TEXT/REFERENCE BOOKS
Course Objectives:

- Understand state-of-the-art in network protocols, architectures, and applications.
- To provide students with a theoretical and practical base in computer networks issues.
- Define the basic terminology of computer networks.
- Recognize the individual components of the big picture of computer networks.
- Outline the basic network configurations.
- List the layers of the TCP/IP and OSI model and describe the duties of each layer.
- Understand the transmission methods underlying LAN and WAN technologies.

Course Outcomes:

After successfully completing the course students will be able to

1. Understand fundamental underlying principles of computer networking.
2. Describe and analyze the hardware, software, components of a network and the interrelations.
3. Analyze the requirements for a given organizational structure and select the most appropriate networking architecture and technologies.
4. Have a basic knowledge of the use of cryptography and network security.
5. Have a basic knowledge of installing and configuring networking applications.
6. Specify and identify deficiencies in existing protocols, and then go onto select new and better protocols.

UNIT - 1

Physical Layer

UNIT - 2

Data Link Layer

Introduction to Data Link Layer, DLC Services, DLL protocols, HDLC, PPP, Media Access Control: Random Access, Controlled Access, Channelization. Wired LAN: Ethernet Protocol, Standard Ethernet, Fast Ethernet, Gigabit Ethernet, 10 Gigabit Ethernet.
UNIT - 3

Wireless LANS & Virtual Circuit Networks
Introduction, Wireless LANS: IEEE 802.11 project, Bluetooth, Zigbee, Connecting devices and Virtual LANS: Connecting devices, Virtual LANS.

UNIT - 4

Network Layer

UNIT - 5

Transport Layer
Introduction, Transport layer protocols and services, Port numbers User Datagram Protocol (UDP), Transmission Control protocol (TCP), SCTP, Quality of services: Dataflow characteristics, Flow Control.

UNIT - 6

Application Layer
Introduction, World Wide Web and HTTP, FTP, Electronic mail, Telnet, Name System (DNS), Cryptography and Network Security: Introduction, Symmetric key ciphers and Asymmetric Key Ciphers, Introduction to network security.

TEXT/REFERENCE BOOKS

4. Wayne Tomasi, “Introduction to Data Communication and Networking”, 1/e, Pearson Education.
Course Objectives:
- Discuss, with confidence, what is cloud computing and what are key security and control considerations within cloud computing environments.
- Identify various cloud services.
- Assess cloud characteristics and service attributes, for compliance with enterprise objectives.
- Explain the four primary cloud category “types”.
- Evaluate various cloud delivery models.
- Contrast the risks and benefits of implementing cloud computing.
- Specify security threat exposure within a cloud computing infrastructure.
- Recognize steps and processes used to perform an audit assessment of a cloud computing environment.
- Summarize specific environments that would benefit from implementing cloud computing, contrasted against those environments that might not benefit.
- Weight the impact of improperly controlled cloud computing environments on organizational sustainability.

Course Outcomes:
1. To impart fundamental concepts in the area of cloud computing.
2. To impart knowledge in applications of cloud computing.
3. Understanding the systems, protocols and mechanisms to support cloud computing.
4. Develop applications for cloud computing.
5. Understanding the hardware necessary for cloud computing.
6. Design and implement a novel cloud computing application.

Introduction
Shift from distributed computing to cloud computing; principles and characteristics of cloud computing- IaaS, PaaS, SaaS; service oriented computing and cloud environment.

Cloud Computing Technology
Client systems, Networks, server systems and security from services perspectives; accessing the cloud with platforms and applications; cloud storage.

Working with Cloud

UNIT - 4

Cloud Services
Using Cloud Services-Cloud collaborative applications and services – case studies with calendars, schedulers and event management.

UNIT - 5

Cloud applications
Cloud applications in project management.

UNIT - 6

Case studies
Case studies- Microsoft Azure, Google App Engine and Open source clouds-Open-Nebula and Eucalyptus.

TEXT/REFERENCE BOOKS

3. Resources from Internet.
Course Objectives:

- To understand the stages of product (hardware/software) design and development.
- To learn the different considerations of analog, digital and mixed circuit design.
- To be acquainted with methods of PCB design and different tools used for PCB Design.
- To understand the importance of testing in product design cycle.
- To understand the processes and importance of documentation.

Course Outcomes:

After successfully completing the course, students will be able to

1. Understand various stages of hardware, software and PCB design.
2. Importance of product test & test specifications.
3. Special design considerations and importance of documentation.

Introduction to Electronic Product Design

Man machine dialog and Industrial design, user-centered design, five element of successful design, cognition, ergonomics. Packaging and factors, design for manufacture, assembly and disassembly, wiring, temperature, vibration and shock. Safety, noise, energy coupling, grounding, filtering and shielding.

Hardware Design & testing methods

Design process. Identifying the requirements, formulating specifications, design specifications, Specifications verses requirements, System partitioning, Functional design, architectural design, Functional model verses architectural model. Prototyping. Performance and Efficiency measures. Formulating a test plan, writing specifications, Test procedure and test cases, Egoless design, design reviews. Module debug and test: black box test, white box test, grey box test.

Software Design and Testing methods

PCB design

Product Debugging and testing
Steps of Debugging, Techniques for troubleshooting, characterization, Electromechanical components, passive components, active components, active devices, operational amplifier, Analog-Digital Conversion, Digital Components, Inspection and test of components, Simulation, Prototyping and testing. Integration, validation and verification and EMI & EMC issues.

Documentation

TEXT/REFERENCE BOOKS
Course Objectives:
- Students will be explored to the interconnection and integration of the physical world and the cyber space.
- To provide ability to design and develop IOT devices.

Course Outcomes:
1. Student will understand the meaning of internet in general and IOT in terms of layers, protocols, packets peer to peer communication
2. Student will learn working IOT at transport layer with the help of various protocols
3. Student will understand of IOT concept at data link layer
4. Student will be able to apply the concept of mobile networking to the internet connected devices
5. Student will be able to measure and schedule the performance of networked devices in IOT
6. Student will analyze the challenges involve in developing IOT architecture

UNIT - 1
Internet in general and Internet of Things
Layers, protocols, packets, services, performance parameters of a packet network as well as applications such as web, Peer-to-peer, sensor networks, and multimedia.

UNIT - 2
Transport services
TCP, UDP, socket programming, Network layer: forwarding & routing algorithms (Link, DV), IP-addresses, DNS, NAT, and routers.

UNIT - 3
Local Area Networks
MAC level, link protocols such as: point-to-point protocols, Ethernet, WiFi 802.11, cellular Internet access, and Machine-to-machine.

UNIT - 4
Mobile Networkin
Roaming and handoffs, mobile IP, and ad hoc and infrastructure less networks.
UNIT – 5

Real-time networking
Soft and real time, quality of service/information, resource reservation and scheduling, and performance measurements.

UNIT - 6

IoT definitions
Overview, applications, potential & challenges, and architecture, IoT examples: Case studies, e.g. sensor body-area-network and control of a smart home.

TEXT/REFERENCE BOOKS

Course Objectives:
- To teach the students Lossless and Lossy compression techniques for different types of data.
- To understand data encryption techniques.
- Network security and ethical hacking.

Course Outcomes:
Student will able to
1. Implement text, audio and video compression techniques.
2. Understand symmetric and asymmetric key cryptography schemes.
3. Understand network security and ethical hacking.

Data Compression

UNIT - 1
Compression Techniques: Loss less compression, Lossy compression, measure of performance, modeling and coding, different types of models, and coding techniques. Text Compression: Minimum variance Huffman coding, extended Huffman coding, Adaptive Huffman coding. Arithmetic coding, Dictionary coding techniques, LZ 77, LZ 78, LZW

Audio Compression
High quality digital audio, frequency and temporal masking, lossy sound compression, µ-law and A-law companding, and MP3 audio standard.

Image and Video Compression

UNIT - 3

Data Security
Security goals, cryptography, stenography cryptographic attacks, services and mechanics. Integer arithmetic, modular arithmetic, and linear congruence, Substitution cipher, transposition cipher, stream and block cipher, and arithmetic modes for block ciphers, Data encryption standard, double DES, triple DES, attacks on DES, AES, key distribution center.
UNIT - 5

Number Theory and Asymmetric Key Cryptography
Primes, factorization, Fermat’s little theorem, Euler’s theorem, and extended Euclidean algorithm, RSA, attacks on RSA, Diffie Hellman key exchange, key management, and basics of elliptical curve cryptography, Message integrity, message authentication, MAC, hash function, H MAC, and digital signature algorithm.

UNIT - 6

System Security
Malware, Intruders, Intrusion detection system, firewall design, antivirus techniques, digital Immune systems, biometric authentication, and ethical hacking.

TEXT/REFERENCE BOOKS

Course Objectives:
- To study HDL based design approach.
- To learn digital CMOS logic design.
- To nurture students with CMOS analog circuit designs.
- To realize importance of testability in logic circuit design.
- To overview SoC issues and understand PLD architectures with advanced features.

Course Outcomes:
1. Model digital circuit with HDL, simulate, synthesis and prototype in PLDs.
2. Understand chip level issues and need of testability.
3. Design analog & digital CMOS circuits for specified applications.

UNIT - 1

VHDL Modeling
Data objects, Data types, Entity, Architecture & types of modeling, Sequential statements, Concurrent statements, Packages, Sub programs, Attributes, VHDL Test bench, Test benches using text files. VHDL modeling of Combinational, Sequential logics & FSM, Meta-stability.

UNIT - 2

PLD Architectures

UNIT - 3

SoC & Interconnect
Clock skew, Clock distribution techniques, clock jitter. Supply and ground bounce, power distribution techniques. Power optimization. Interconnect routing techniques; wire parasitic, Signal integrity issues. I/O architecture, pad design, Architectures for low power.

UNIT - 4

Digital CMOS Circuits
MOS Capacitor, MOS Transistor theory, C-V characteristics, Non ideal I-V effects, Technology Scaling. CMOS inverters, DC transfer characteristics, Power components, Power delay product. Transmission gate. CMOS combo logic design. Delays: RC delay model,
Effective resistance, Gate and diffusion capacitance, Equivalent RC circuits; Linear delay model, Logical effort, Parasitic delay, Delay in a logic gate, Path logical efforts.

UNIT - 5

Analog CMOS Design

UNIT - 6

Testability

Types of fault, Need of Design for Testability (DFT), Testability, Fault models, Path sensitizing, Sequential circuit test, BIST, Test pattern generation, JTAG & Boundary scan, TAP Controller.

TEXT/REFERENCE BOOKS

1. Charles H. Roth, “Digital systems design using VHDL”, PWS.
Course Objectives:
- Ability to recognize industrial control problems suitable for PLC control.
- An overview of technology of advanced topics such as SCADA, DCS Systems, Digital Controller, CNC Machines.
- The ability to select the essential elements and practices needed to develop and implement the Engineering Automation using PLC approach.

Course Outcomes:
After successfully completing the course students will be able to
1. Understand PLC architecture, PLC addressing concepts.
2. Develop PLC ladder programs for simple industrial applications.
3. Design Automation systems for industrial applications.

UNIT - 1

Process Control & Automation

UNIT - 2

Transmitters and Signal Conditioning
Need of transmitters, Standardization of signals, Current, Voltage and Pneumatic signal standards, 2-Wire & 3-Wire transmitters, Analog and Digital signal conditioning for RTD, Thermocouple, DPT etc, Smart and Intelligent transmitters.

UNIT - 3

Controllers and Actuators
PID Controller, Cascade PID control, Microprocessor Based control, PAC (Programmable Automation controller), Mechanical switches, Solid state switches, Electrical actuators: Solenoids, Relays and Contactors, AC Motor, VFD, energy conservation schemes through VFD, DC Motor, BLDC Motor, Stepper Motor, Servo Motor, Pneumatic and hydraulic actuators.
PLC and Human Machine Interface (HMI)
Functions of PLC, Advantages, Architecture, working of PLC, Selection of PLC, Networking of
PLCs, Ladder Programming, Interfacing Input and Output devices with PLC, PLC based
automated systems. High frequency inputs. PLC programming standard IEC61131, Soft PLC
techniques. IT Interfaces required: for ERP, MIS, MES. Supporting Applications interfaces:

SCADA & Distributed control system
Elements of SCADA, Features of SCADA, MTU- functions of MTU, RTU- Functions of RTU,
Applications of SCADA, Communications in SCADA- types & methods used, Mediums
used for communication, Introduction to DCS, Architecture of DCS, Input and output
modules, communication module, Specifications of DCS.

Automation and CNC (Computer Numeric Control) Machines
Introduction of CNC Machines: Basics and need of CNC machines, NC, CNC and DNC (Direct
NC) systems, Structure of NC systems, Applications of CNC machines in manufacturing,
Advantages of CNC machines. Industrial Communication: Device net, Inter bus, Device
network: Foundation Field bus -H1, HART, CAN, PROFIBUS-PA, Control network: Control
Net, FF-HSE, PROFIBUS-DP, Ethernet, and TCP/IP. Panel Engineering for Automation.

TEXT/REFERENCE BOOKS
 Education.
2. Madhuchhanda Mitra, Samarjit Sen Gupta, “Programmable Logic controllers and
 Industrial Automation”; Penram International Publishing India Pvt. Ltd.
3. Stuart A. Boyer, SCADA supervisory control and data acquisition, ISA Publication.
4. John W. Webb, Ronold A Reis, “Programmable Logic Controllers, Principles and
Course Objectives:

- To understand basic concepts and methodologies for the analysis and modeling of speech signal.
- To characterize the speech signal as generated by a speech production model
- To understand the mechanism of speech and audio perception
- To understand the motivation of short-term analysis of speech and audio
- To perform the analysis of speech signal using LPC
- To extract the information of the speech or audio signals in terms of cepstral features
- To provide a foundation for developing applications in this field.

Course Outcomes:

After successfully completing the course students will be able to

1. Design and implement algorithms for processing speech and audio signals considering the properties of acoustic signals and human hearing.
2. Analyze speech signal to extract the characteristic of vocal tract (formants) and vocal cords (pitch).
3. Write a program for extracting LPC Parameters using Levinson Durbin algorithm.
4. Formulate and design a system for speech recognition and speaker recognition.

UNIT - 1

Fundamentals of speech production

Anatomy and physiology of speech production, Human speech production mechanism, LTI model for speech production, Nature of speech signal, linear time varying model, articulatory phonetics, acoustic phonetics, Voiced and Unvoiced speech.

UNIT - 2

Human auditory system

Human auditory system, simplified model of cochlea. Sound pressure level and loudness. Sound intensity and Decibel sound levels. Concept of critical band and introduction to auditory system as a filter bank, Uniform, non uniform filter bank, mel scale and bark scale. Speech perception: vowel perception.
UNIT - 3

Time and frequency domain methods for audio processing

UNIT - 4

Linear prediction analysis

UNIT - 5

Cepstral Analysis

UNIT - 6

Speech and Audio processing applications

TEXT/REFERENCE BOOKS

5. Dr. Shaila Apte, “Speech and audio processing”, Wiley India Publication.
Course Objectives:

- To Understand the basic WSN technology and supporting protocols, with emphasis placed on standardization basic sensor systems and provide a survey of sensor technology.
- Understand the medium access control protocols and address physical layer issues.
- Learn key routing protocols for sensor networks and main design issues.
- Learn transport layer protocols for sensor networks, and design requirements.
- Understand the Sensor management, sensor network middleware, operating systems.

Course Outcomes:

1. Learn to model radio signal propagation issues and analyze their impact on communication system performance.
2. Understand how the various signal processing and coding techniques combat channel uncertainties.
3. Understand the techniques of radio spectrum allocation in multi-user systems and their impact on networks capacity.
4. Introduce various wireless systems and standards and their basic operation cases.
5. Learn to simulate wireless networks and analyze the simulation results.

UNIT - 1

Introduction and Overview of Wireless Sensor Networks

UNIT - 2

Medium Access Control Protocols for Wireless Sensor Networks

Introduction, Background, Fundamentals of MAC Protocols, MAC Protocols for WSNs: Schedule-Based Protocols, Random Access-Based Protocols, Coordination, Schedule Synchronization, Adaptive Listening, Access Control and Data Exchange (B-MAC,Box-MAC, Bit-MAC, H-MAC, I-MAC, O-MAC, S-MAC, Ri-MAC, T-MAC, Q-MAC (Query MAC), Q-MAC (QoS MAC), X-MAC)
Routing Protocols for Wireless Sensor Networks

Transport Control Protocols
Introduction, Traditional Transport Control Protocols: TCP (RFC 793), UDP (RFC 768), Mobile IP.

Middlewares for Wireless Sensor Networks

Operating Systems for Wireless Sensor Networks
Introduction, Examples of Operating Systems: Tiny OS, Mate, Magnet OS.

TEXT/REFERENCE BOOKS
2. Wireless Sensor Networks Signal Processing and Communications by Ananthram Swami, Qing Zhao, Yao-Win Hong, Lang Tong Pub: John Wiley & Sons.
Dr. Babasaheb Ambedkar Technological University

EC 42 B Radar & Satellite Communication 3 Credits

Course Objectives:
- To provide students with good depth of knowledge in radar and Satellite communication.
- Knowledge of theory and practice of advanced communication techniques e.g. TDMA, CDMA, FDMA.
- This will equip the students for further studies and research knowledge of modern applications in radar and Satellite communication.

Course Outcomes:
At the end of the course, the students will have:
2. Ability to identify, formulate and solve engineering problems related to radar and Satellite communication.
3. The student would be able to analyze the various aspects of establishing a geo-stationary satellite communication link.
5. Acquired knowledge about Radar and Radar Equations.

UNIT - 1

Radar Communication
Basic principles and fundamentals, block diagram of basic radar, classification, radar performance factors, radar range equation, factors influencing maximum range, effects of noise, Pulsed radar systems, block diagram and description, antennas and scanning, display methods, moving target indication, radar beacons, other radar systems such as CW Doppler radar, FM CW Doppler radar, phased array radars, planar array radars, various applications of radar such as navigational aids, military, surveillance.

UNIT - 2

Basic Principles satellite communication systems
General features, frequency allocation for satellite services, properties of satellite communication systems, Earth Station: Introduction, earth station subsystem, different types of earth stations

Satellite Orbits
Introduction, Kepler's laws, orbital dynamics, orbital characteristics, satellite spacing and orbital capacity, angle of elevation, eclipses, launching and positioning, satellite drift and station keeping
UNIT - 3

Satellite Construction (Space Segment)
Introduction; attitude and orbit control system; telemetry, tracking and command; power systems, communication subsystems, antenna subsystem, equipment reliability and space qualification

UNIT - 4

Satellite Links
Introduction, general link design equation, system noise temperature, uplink design, downlink design, complete link design, effects of rain

UNIT - 5

The Space Segment Access and Utilization
Introduction, space segment access methods: TDMA, FDMA, CDMA, SDMA, assignment methods

UNIT - 6

The Role and Application of Satellite Communication
Introduction to Digital Satellite and Mobile Satellite Communication.

TEXT/REFERENCE BOOKS

1. Skolnik, “Principles of Radar Engineering” MCH.
2. Timothy Pratt, Charles W. Bostian, Satellite Communications, John Wiley & Sons
5. M. O. Kolawole, Satellite Communication Engineering, Marcel Dekker, Inc. NY
Course Objectives:

- This course covers basic concepts of artificial neural networks, fuzzy logic systems and their applications.
- Its focus will be on the introduction of basic theory, algorithm formulation and ways to apply these techniques to solve real world problems.
- It deals with introduction and different architectures of neural network
- It deals with the Application of Neural Networks.
- It deals with Fuzzy Logic Controller.
- It deals with applications of Fuzzy logic

Course Outcomes:

1. The student will be able to obtain the fundamentals and types of neural networks.
2. The student will have a broad knowledge in developing the different algorithms for neural networks.
3. Student will be able analyze neural controllers.
4. Student will have a broad knowledge in Fuzzy logic principles.
5. Student will be able to determine different methods of Defuzzification

UNIT - 1

Introduction

Biological neurons, McCulloch and Pitts models of neuron, Types of activation function, Network architectures, Knowledge representation, Learning process: Error-correction learning, Supervised learning, Unsupervised learning, Learning Rules

UNIT - 2

Single Layer Perception

Perception convergence theorem, Method steepest descent - least mean square algorithms

UNIT - 3

Multilayer Perception

Derivation of the back-propagation algorithm, Learning Factors.
UNIT - 4

Radial Basis and Recurrent Neural Networks

UNIT - 5

Neuro-dynamics

UNIT - 6

Fuzzy logic

TEXT/REFERENCE BOOKS

1. Simon Haykin, "Neural Network a - Comprehensive Foundation", Pearson Education.
2. Dr. S. N. Sivanandam, Mrs S.N. Deepa Introduction to Soft computing tool Wiley Publication.
6. Ahmad Ibrahim, "Introduction to Applied Fuzzy Electronics", PHI.
9. Christopher M Bishop Neural Networks for Pattern Recognition, Oxford Publication.
11. Dr. S. N. Sivanandam, Dr. S. Sumathi Introduction to Neural Network Using Matlab Tata McGraw-Hill
Course Objectives:
- To learn and understand the basic principles of Telecommunication switching, traffic and networks.
- To learn and understand basic concepts of cellular system, wireless propagation and the techniques used to maximize the capacity of cellular network.
- To learn and understand architecture of GSM and CDMA system.
- To understand mobile management, voice signal processing and coding in GSM and CDMA system.

Course Outcomes:
After successfully completing the course students will be able to:
1. Explain and apply the concepts telecommunication switching, traffic and networks.
2. Analyze the telecommunication traffic.
3. Analyze radio channel and cellular capacity.
4. Explain and apply concepts of GSM and CDMA system.

UNIT - 1

Telecommunication Switching & Traffic

UNIT - 2

Switching Networks and Signaling
Single Stage Networks, Gradings, Link Systems, Grades of service of link systems. Time Division Switching: Space and time switching, Time division switching networks, Synchronization, Call processing Functions, Common Control, Reliability, Availability and Security. Signaling: Customer line signaling. FDM carrier systems, PCM signaling, Inter-register signaling, Common channel signaling principles, CCITT signaling No. 6, CCITT signaling No. 7, Digital customer line signaling.
UNIT - 3

Cellular Concepts

UNIT - 4

First and Second Generation Mobile Systems
First Generation Cellular Systems, AMPS, GSM Cellular Telephony: Introduction, Basic GSM Architecture, Basic radio transmission parameters in GSM system, Logical Channels, GSM time hierarchy, GSM burst structure, Description of call setup procedure, Handover, Modifications and derivatives of GSM.

UNIT - 5

GSM Services
GSM Physical layer: Speech Coding and decoding, GMSK modulation, Data transmission in GSM: Data Services, SMS, HSCSD, GPRS, EDGE.

UNIT - 6

CDMA Based Mobile Systems

TEXT/REFERENCE BOOKS

5. Thiagarajan Vishwanathan, “Telecommunication Switching Systems and Networks”; PHI Publications.
Dr. Babasaheb Ambedkar Technological University

| EC 49 D | Analog and Mixed Signal Processing | 3 Credits |

UNIT - 1
Switched Capacitor filters: Introduction to Analog and Discrete Time signal processing, sampling theory, Nyqist and over sampling rates, Analog filters, analog amplifiers, lock in amplifiers.

UNIT - 2
Analog integrated and discrete time switched capacitor filters, non idealities in switched capacitor filters, architectures for switched capacitor filters and their applications and design. Switched capacitor amplifiers.

UNIT - 3
Data converters: Basics of data converters, Types of data converters, types of ADCs, Successive approximation, dual slope, Flash type, pipelined ADCs, hybrid ADCs, high resolution ADCs, parallel path ADCs like time-interleaved and multi-channel converters.

UNIT - 4
Types of DACs and their architectures, binary weighted DACs. Performance metrics of data converters, SNR, SFDR, SNDR.

UNIT - 5
Background and foreground techniques to improve performance of data converters, Green data converters (low power design).

UNIT - 6
Frequency synthesizers and synchronization: Analog PLLs, Digital PLLs design and architectures, Delay locked loops design and architectures. Direct Digital Synthesis.

TEXT/REFERENCE BOOKS
1. CMOS mixed-signal circuit design by R. Jacob Baker Wiley India, IEEE press, reprint 2008
4. Mixed Signal and DSP Design techniques, Engineering Analog Devices Inc, Engineering Analog Devices Inc, Walt Kester, Publisher Newnes.
5. Digital Frequency Synthesis Demystified, Bar-Giora Goldberg, Elsevier. Published by
Course Objectives:
The objective of the course is that at the end of the course, the student should be able to learn:

- Concepts of GSM/EGPRS Networks.
- Architecture of GSM/EGPRS Networks.
- Concepts of CDMA IS 95/1XRTT/EVDO Networks.
- Concepts of 3rd Generation Network UMTS/WCDMA.
- 3G UMTS Network Architecture.
- 3G UMTS Radio Network Planning.
- 3G UMTS Radio Network Optimization.
- Concepts of LTE/4G.
- Network Architecture of LTE/4G.
- 3G Applications and deployment issues.
- LTE/4G Applications and deployment issues.
- Concepts of Wi MAX
- Architecture of Wi MAX
- Future trends in Mobile Communication/5G Networks
- Regulations in the era of convergence

Course Outcomes:
1. Get sufficient idea about migration path to 4G.
2. Understand fundamental of UMTS.
3. Get detailed insight into the technology used in UMTS, 3G LTE and 4G mobile radio networks
4. Understand the 3G LTE/4G architecture
5. Understand the different protocols involved in achieving high data rates in 3G, LTE/4G.
6. Learn how OFDM, MIMO and SDR work.
7. Learn all about the 3G LTE/4G air interface.
8. Learn the operation of handovers over heterogeneous networks.

UNIT - 1

Wireless Communications and Diversity
Fast Fading Wireless Channel Modeling, Rayleigh/Ricean Fading Channels, BER Performance in Fading Channels, Diversity modeling for Wireless Communications, BER Performance Improvement with diversity, Types of Diversity - Frequency, Time, Space.
UNIT - 2

Broadband Wireless Channel Modeling and Cellular Communications

UNIT - 3

CDMA and OFDM

UNIT - 4

MIMO
Introduction to MIMO, MIMO Channel Capacity, SVD and Eigen modes of the MIMO Channel, MIMO Spatial Multiplexing - BLAST, MIMO Diversity - Alamouti, OSTBC, MRT, MIMO - OFDM

UNIT - 5

UWB (Ultra wide Band)
UWB Definition and Features, UWB Wireless Channels, UWB Data Modulation, Uniform Pulse Train, Bit - Error Rate Performance of UWB.

UNIT - 6

3G and 4G Wireless Standards
GSM, GPRS, WCDMA, LTE, Wi MAX.

TEXT/REFERENCE BOOKS

1. Fundamentals of Wireless Communications - David Tse and Pramod Viswanath, Publisher - Cambridge University Press.
3. Wireless Communications: Principles and Practice -Theodore Rappaport- Prentice Hall. MIMO.
Course Objectives:

- The objective of this course is to introduce to the students the basic concepts of Economics & Management and give them exposure to Telecommunication Regulation in India/ in general.
- This course introduces the participants in the diverse aspects of the industrial telecommunications sector.

Course Outcomes:

1. To familiarize the participants with the technological changes and tendencies in the industry of telecommunications
2. familiarize to the participants with the different regulation models, usually used in the practice of the regulation of the systems of telecommunications
3. A wide spectrum of material has been selected, with the purpose of introducing the participants to the important changes that are happening in the telecommunications industry.

UNIT - 1

Introduction to telecommunications regulation

UNIT - 2

Going Mobile: Managing the Spectrum

UNIT - 3

Capacity to Connectivity: Network Access and Interconnection

UNIT - 4

Universal Access and Service

UNIT - 5

Telecommunications Regulation
The Task of Regulation, Markets and market failure, the rules of regulation. -The Framework for Regulation, Legal frameworks, Instruments of regulation, Enforcement, Dangers of regulation and operational aspects. -Regulatory Strategy and Price Controls, Market strategies/ structures, Engineering and technology. -Regulation and the Future (John Buckley, Telecommunications Regulation)

UNIT - 6

Telecom Policy
Course Objectives:
- To understand concepts of statistical decision theory and parameter estimation.
- To study application of detection and estimation theory in filtering, communication and radar.

Course Outcomes:
After successfully completing the course students will be able to
1. Apply suitable hypothesis testing criteria for signal detection problems.
2. Use parameter estimation in signal processing and communication problems.
3. Design an estimator and detector.

UNIT - 1
Statistical Decision Theory

UNIT - 2
Parameter Estimation-I

UNIT - 3
Parameter Estimation-II
Cramer-Rao Inequality, Multiple Parameter Estimation, Best Linear Unbiased Estimator, Least-Square Estimation, Recursive Least-Square Estimator.
UNIT - 4

Filtering
Introduction, Linear Transformation and Orthogonality Principle, Wiener Filters, Discrete Wiener Filters, Kalman Filter.

UNIT - 5

Detection and Parameter Estimation
Introduction, Signal Representation, Binary Detection, M-ary Detection, Linear Estimation.

UNIT - 6

Detection Theory in Radar

TEXT/REFERENCE BOOKS

Course Objectives:

- Introduce a relatively new computing paradigm for creating intelligent machines useful for solving complex real world problems.
- Insight into the tools that make up the soft computing technique: fuzzy logic, artificial neural networks and hybrid systems Techniques.
- To create awareness of the application areas of soft computing technique.
- Provide alternative solutions to the conventional problem solving techniques in image/signal processing, pattern recognition/classification, control system.

Course Outcomes:

Having successfully completing the course students will be able to

1. Use a new tool /tools to solve a wide variety of real world problems.
2. Find an alternate solution, which may offer more adaptability, resilience and optimization.
3. Identify the suitable antenna for a given communication system.
4. Gain knowledge of soft computing domain which opens up a whole new career option.
5. Tackle real world research problems.

UNIT - 1

Artificial Neural Network -I

UNIT - 2

Artificial Neural Network-II

Multilayer perceptron (MLP) and back propagation algorithm o Application of MLP for classification and regression o Self- organizing Feature Maps, k- means clustering o Learning vector quantization Radial Basis Function networks: Cover’s theorem, mapping functions(Gaussian, Multi-quadrics, Inverse multi quadrics, Application of RBFN for classification and regression o Hopfield network, associative memories.
UNIT - 3

Fuzzy Logic -I
Concept of Fuzzy number, fuzzy set theory (continuous, discrete) o Operations on fuzzy sets, Fuzzy membership functions (core, boundary, and support), primary and composite linguistic terms, Concept of fuzzy relation, composition operation (T-norm, T-conorm) o Fuzzy if-then rules.

UNIT - 4

Fuzzy Logic -II

UNIT - 5

Fuzzy Control Systems
CONTROL SYSTEM DESIGN PROBLEM 1.5, Control (Decision) Surface, Assumptions in a Fuzzy Control System Design V, Fuzzy Logic Controllers Soft o Comparison with traditional PID control, advantages of FLC, Architecture of a FLC: Mamdani Type, Example Aircraft landing control problem.

UNIT - 6

Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
ANFIS architecture, Hybrid Learning Algorithm, Advantages and Limitations of ANFIS Application of ANFIS/CANFIS for regression.

TEXT/REFERENCE BOOKS

Course Objectives:

- This Multirate Signal Processing course covers advanced techniques for the design of digital filters, which are essential components in almost every digital signal processing system, as well as cyclostationary signals, so important to the understanding of modulation systems.
- The course then moves on to treat multi-rate systems and presents multi-rate processing of both deterministic and random signals, culminating in a full case study exercise.
- To analyze multi-rate systems and the effects of interpolation and decimation on deterministic signals.
- To analyze the effects of interpolation and decimation on random signals.
- To design interpolation and decimation filters to a given specification.

Course Outcomes:

1. Ability to understand the concepts of sampling rate conversions, Decimation and Interpolation as part of Signal Processing techniques.
2. Able to explain how the multirate implementation of ADC and DAC converters works.
3. Able to describe basic sampling rate conversion algorithms.
4. Able to draw and describe different kinds of interpolator and decimator.
5. Able to analyze how the interpolated FIR filter works.
6. Able to do sampling rate conversion.

UNIT - 1

Fundamentals of Multirate Systems
Introduction, Basic multirate operations, Interconnection of building blocks, Polyphase representation, Multistage implementation, Some application of multirate systems, Special filter and filter banks.

UNIT - 2

Maximally Decimated Filter Banks
Introduction, Errors created in the QMF bank, A simple alias free QMF system, Power symmetric QMF banks, M-channel filter banks, Polyphase representation, Perfect reconstruction system, alias free filter banks, Treestructured filter banks, Transmultiplexer.
UNIT - 3

Paranitary Perfect Reconstruction Filter Banks
Introduction, Lossless transfer matrices, Filter banks properties induced by paraunitariness, Two channel FIR paraunitary QMF banks, Two channel paraunitary QMF lattice, M - channel FIR paraunitary filter banks, Transformcoding and LOT.

UNIT - 4

Linear Phase and Cosine Modulated Filter Banks
Introduction, Some necessary conditions, Lattice structure for linear phase FIR PR banks, formal synthesis of linear phase FIR PR QMF Lattice. Pseudo QMF banks, Design of the pseudo QMF bank, Efficient polyphase structure, Cosine modulated perfect reconstruction system.

UNIT - 5

The Wavelet Transform and its Relation to Multirate Filter Banks
Introduction, Background and outline, Short time fourier transform, The Wavelet transform, DT orthonomal Wavelets, Continuous time orthonormal Wavelet basis.

UNIT - 6

Multidimensional, Multivariable and Lossless Systems

TEXT/REFERENCE BOOKS

Course Objectives:
- To study RF issues related to active and passive components.
- To study circuit design aspects at RF.
- To learn design and modeling of circuits at RF.

Course Outcomes:
After successfully completion of the course students will be able to:
1. Understand behavior of passive components at high frequency and modeling of HF circuit.
2. Design HF amplifiers with gain bandwidth parameters.
3. Understand Mixer types and characteristics.
4. Gain the knowledge about PLLs and Oscillators with respect to their circuit topologies.

UNIT - 1
RF Behavior of Passive Components

UNIT - 2
Bandwidth Estimation

UNIT - 3
High Frequency Amplifier Design
Low Noise Amplifier Design

Oscillators

Mixers

TEXT/REFERENCE BOOKS
Course Objectives:

- To understand the basic signals in the field of biomedical.
- To study origins and characteristics of some of the most commonly used biomedical signals, including ECG, EEG, evoked potentials, and EMG.
- To understand Sources and characteristics of noise and artifacts in bio signals.
- To understand use of bio signals in diagnosis, patient monitoring and physiological investigation.
- To explore research domain in biomedical signal processing.
- To explore application of established engineering methods to complex biomedical signals problems.

Course Outcomes:

1. The student will be able to model a biomedical system.
2. The student will be able to understand various methods of acquiring bio signals.
3. The student will be able to understand various sources of bio signal distortions and its remedial techniques.
4. The students will be able to analyze ECG and EEG signal with characteristic feature points.
5. The student will have a basic understanding of diagnosing bio-signals and classifying them.

UNIT - 1

Biomedical Signals

UNIT - 2

Cardio Vascular and Nervous System

Analysis of Electrical Activity of Heart

Analysis of Electrical Activity of Brain

Electroencephalogram – Structure of brain, EEG signal acquisition, 10-20 electrode placement, EEG rhythms & waveform - categorization of EEG activity - recording techniques – EEG applications- Epilepsy, sleep disorders, brain computer interface. Use of Fourier Transform in EEG Signal Analysis.

Analog Signal Processing

Digital Signal Processing

Characteristics, frequency domain representation; Stationary and non-stationary bio-signals, waveform detection, Sampling Theory, Finite data considerations (Edge effects), Z Transform, FIR and IIR filters specific to event detection of ECG. Computation of diagnostic signal parameters of ECG like Heart rate and QRS detection using Multivariate analysis like PCA and ICA.

TEXT/REFERENCE BOOKS

Course Objectives:

- To describe the history and early beginnings of automated manufacturing & Robotics.
- Ability to recognize industrial control problems.
- Aims to Develop understanding Robotics Components.
- To apply creative approaches to practical applications, identify technological opportunities in robotics.
- An over view of technology of advanced topics such as CNC Machines, Human Robot Interaction.
- The ability to provide Automation solution.

Course Outcomes:

After successfully completing the course students will be able to

1. Understand Need of Automation.
2. Demonstrate use of engineering methods and problem solving towards design of the specified robot.
3. Compare and contrast various mechanical systems, and the industrial application of robotic and automation.
4. Identify prerequisites of Robotics for small industrial Applications.
5. Describe Robot control & its applications.

UNIT - 1

Introduction to Automation

UNIT - 2

Robotics

UNIT - 3

Robot Transformation, Sensors & End effectors

UNIT - 4

Kinematics

UNIT - 5

Dynamics
Lagrangian Dynamics, link inertia tensor and manipulator inertia tensor, Newton-Euler Dynamics of Robot, Newton-Euler formulation for RR & RP manipulators, Dynamics of systems of Interacting Rigid Bodies, D-H Convention, Trajectory planning for Flexible Robot, Cubic polynomial linear segments with parabolic blending, static force and moment transformation, solvability, stiffness, Singularities.

UNIT - 6

Robot Control & Applications
3. Robot Motion and Control (Recent Developments) by M. Thoma & M. Morari.
Course Objectives:
- To understand “Modern Radio Communication System “that can be reconfigured.
- To understand GNU Radio
- To understand how SDR platform provides easy access to wireless network system
- To understand how unlike simulation in Communication Projects, SDR allows easy access to both PHY and MAC layer
- To understand the concept of Cognitive Radio and Spectrum sharing

Course Outcomes:
After successfully completing the course students will be able to
1. Compare SDR with traditional Hardware Radio HDR
2. Implement modern wireless system based on OFDM, MIMO & Smart Antenna
3. Build experiment with real wireless waveform and applications, accessing both PHY and MAC, Compare SDR versus MATLAB and Hardware Radio
4. Work on open projects and explore their capability to build their own communication system.

UNIT - 1
Software Defined Radio fundamentals
Introduction to SDR, Need of SDR, Principles of SDR, Basic Principle and difference in Analog radio and SDR, SDR characteristics, required hardware specifications, Software/Hardware platform, GNU radio -What is GNU radio, GNU Radio Architecture, Hardware Block of GNU,GNU software, MATLAB in SDR, Radio Frequency Implementation issues, Purpose of RF front End, Dynamic Range, RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer, Diplexer, RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion Case study : AM/FM/BPSK/QPSK/OFDM Simulation in Matlab.

UNIT - 2
SDR Architecture
UNIT - 3

Multi Rate Signal Processing
Sample timing algorithms, Frequency offset estimation and correction, Channel Estimation, Basics of Multi Rate, Multi Rate DSP, Multi Rate Algorithm, DSP techniques in SDR, OFDM in SDR.

UNIT - 4

Smart/MIMO Antennas using Software Radio

UNIT - 5

Cognitive Radio

UNIT - 6

Applications of SDR

TEXT/REFERENCE BOOKS